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1 Historical Remarks and Examples

The last few decades have seen the development, in different branches of mathematics, of the
notion of a local product structure, i.e., fiber spaces and their generalizations. Characteristic
classes are the simplest global invariants which measure the deviation of a local product structure
from a product structure. They are intimately related to the notion of curvature in differential
geometry. In fact, a real characteristic class is a ”total curvature,” according to a well-defined
relationship. We will give in this paper an exposition of the relations between characteristic
classes and curvature and discuss some of their applications.

The simplest characteristic class is the Euler characteristic. If 𝑀 is a finite cell complex, its
Euler characteristic is defined by

𝜒(𝑀)=∑
𝑘
(−1)𝑘𝛼𝑘 =∑

𝑘
(−1)𝑘𝑏𝑘 , (1)

where 𝛼𝑘 is the number of 𝑘-cells and 𝑏𝑘 is the 𝑘-dimensional Betti number of 𝑀. The equality
of the last two expressions in (1) is known as the Euler-Poincaré formula.

Now let 𝑀 be a compact oriented differentiable manifold of dimension 𝑛 and let 𝜉 be a
smooth vector field on 𝑀 with isolated zeroes. Each zero can be assigned a multiplicity. In his
dissertation (1927) H. Hopf proved that

𝜒(𝑀)=∑ zeroes of 𝜉. (2)

This gives a differential topological meaning to 𝜒(𝑀).

This idea can be immediately generalized. Instead of one vector field we consider 𝑘 smooth
vector fields 𝜉1,…,𝜉𝑘. In the generic case the points on 𝑀 where the exterior product 𝜉1 ∧⋯∧
𝜉𝑘 = 0, i.e., where the vectors are linearly dependent, form a (𝑘 −1)-dimensional submanifold.
Depending on the parity of 𝑛−𝑘, this defines a (𝑘−1)-dimensional cycle, with integer coefficients
ℤ or with coefficients ℤ2, whose homology class, and in particular the homology class mod 2 in
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all cases, is independent of the choice of the 𝑘 vector fields. Because the linear dependence of
vector fields is expressed by ”conditions,” it is more proper to define the differential topological
invariants so obtained as cohomology classes. This leads to the Stiefel-Whitney cohomology
classes 𝜔𝑖 ∈𝐻 𝑖(𝑀,ℤ2), 1 ≤ 𝑖 ≤ 𝑛−1, 𝑖 = 𝑛−𝑘+1. The 𝑛th Stiefel-Whitney class corresponding
to 𝑘 = 1 or the Euler class has integer coefficients 𝜔𝑛 ∈𝐻𝑛(𝑀,ℤ). It is related to 𝜒(𝑀) by

𝜒(𝑀)=∫
𝑀
𝜔𝑛 , (3)

where we write the pairing of homology and cohomology by an integral.

Whitney went much farther. He saw the great generality of the notion of a vector bundle over
an arbitrary topological space𝑀. (Actually Whitney considered sphere bundles, thus gaining the
advantage that the fibers are compact but losing the linear structure on the fibers. He was not
concerned with the latter, as he was only interested in topological problems.) He also saw the
effectiveness of the principal bundles and the fact that the universal principal bundle

𝑂(𝑞+𝑁)/𝑂(𝑁)⟶𝑂(𝑞+𝑁)/𝑂(𝑞)×𝑂(𝑁) =𝐺(𝑞,𝑁), (4)

say, has the property
𝜋𝑖(𝑂(𝑞+𝑁)/𝑂(𝑁)) = 0, 0 ≤ 𝑖 <𝑁, (5)

where 𝜋𝑖 is the 𝑖th homotopy group. The left-hand side of (4) is called a Stiefel manifold and can
be regarded as the space of all orthonormal 𝑞-frames through a fixed point 0 of the euclidean
space 𝐸𝑞+𝑁 of dimension 𝑞 +𝑁 and the right-hand side is the Grassmann manifold of all 𝑞-
dimensional linear spaces through 0 in 𝐸𝑞+𝑁, while the mapping 𝜋 in (4) can be interpreted
geometrically as taking the 𝑞-dimensional space spanned by the 𝑞 vectors of the frame. Thus the
universal principal bundle has the feature that its total space has a string of vanishing homotopy
groups while its base space, the Grassmann manifold, has rich homological properties. The
associated sphere bundle of the principal bundle (4) can be written

𝑂(𝑞+𝑁)/𝑂(𝑞−1)×𝑂(𝑁)→𝑂(𝑞+𝑁)/𝑂(𝑞)×𝑂(𝑁). (6)

The importance of the universal bundle lies in the Whitney-Pontrjagin imbedding theorem:
let 𝑀 be a finite cell complex. A sphere bundle of fiber dimension 𝑞−1 (or a vector bundle 𝐸 of
fiber dimension 𝑞) over𝑀 can be induced by a continuous mapping 𝑓∶ 𝑀 →𝐺(𝑞,𝑁), dim𝑀 <𝑁,
and 𝑓 is defined up to a homotopy.

Let 𝑢 ∈ 𝐻 𝑖(𝐺(𝑞,𝑁),𝐴) be a cohomology class with coefficient group 𝐴. It follows from the
above theorem that 𝑓∗𝑢 ∈𝐻 𝑖(𝑀,𝐴) depends only on the bundle. It is called a characteristic class
corresponding to the universal class 𝑢.
Example 1.1. Consider all the 𝑞-dimensional linear spaces 𝑋 through 0 in 𝐸𝑞+𝑁 satisfying the
Schubert condition

dim(𝑋 ∩𝐸𝑖+𝑁−1) ≥ 𝑖 , 1 ≤ 𝑖 ≤ 𝑞, (7)

where 𝐸𝑖+𝑁−1 is a fixed space of dimension 𝑖 +𝑁 −1 through 0. They form a cycle mod 2 of
dimension 𝑞𝑁 −𝑖 in 𝐺(𝑞,𝑁). The dual of its homology class is an element 𝑤̃𝑖 ∈𝐻 𝑖(𝐺(𝑞,𝑁),ℤ2)
and is called the 𝑖th universal Stiefel-Whitney class. Its image 𝑤𝑖(𝐸) = 𝑓∗𝑤̃𝑖 ∈𝐻 𝑖(𝑀,ℤ2), 1≤ 𝑖 ≤
𝑞, is called the Stiefel-Whitney class of the bundle 𝐸.
Example 1.2. Similarly, consider the 𝑞-dimensional linear spaces 𝑋 through 0 satisfying the
condition

dim(𝑋 ∩𝐸2𝑘+𝑁−2) ≥ 2𝑘, (8)

where 𝐸2𝑘+𝑁−2 is fixed, with its superscript indicating the dimension. They form a cycle of
dimension 𝑞𝑁 −4𝑘 with integer coefficients. The dual of its homology class is an element 𝑝̃𝑘 ∈
𝐻4𝑘(𝐺(𝑞,𝑁),ℤ) and is called a universal Pontrjagin class. Its image 𝑝𝑘(𝐸) = 𝑓∗𝑝̃𝑘 ∈ 𝐻4𝑘(𝑀,ℤ),
1≤ 𝑘 ≤ [𝑛4], 𝑛 = dim𝑀, is called a Pontrjagin class of 𝐸.
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Example 1.3. It has been known that the complex Grassmann manifold

𝐺(𝑞,𝑁,ℂ) =𝑈(𝑞+𝑁)/𝑈(𝑞)×𝑈(𝑁) (9)

has simpler topological properties than the real ones. In fact, it is simply connected, has no
torsion (i.e., no homology class of finite order), and its odd-dimensional homology classes are all
zero. 𝐺(𝑞,𝑁,ℂ) can be regarded as the manifold of all 𝑞-dimensional linear spaces 𝑋 through a
fixed point 0 in the complex number space ℂ𝑞+𝑁 of dimension 𝑞+𝑁. Imitating Example 1, let
𝐶𝑖+𝑁−1 be a fixed space of dimension 𝑖+𝑁−1 through 0. Then all the 𝑋 satisfying the condition

dim(𝑋 ∩𝐶𝑖+𝑁−1) ≥ 𝑖 , 1 ≤ 𝑖 ≤ 𝑞, (10)

form a cycle of real dimension 2(𝑞𝑁 − 𝑖) with coefficients ℤ. As above, this defines the Chern
classes 𝑐𝑖(𝐸) ∈ 𝐻2𝑖(𝑀,ℤ), 1 ≤ 𝑖 ≤ 𝑞, of a complex vector bundle 𝐸 and they are cohomology
classes with integer coefficients.

When applied to the tangent bundle of a differentiable manifold the Stiefel-Whitney classes
and the Pontrjagin classes are invariants of the differentiable structure. Similarly, the Chern
classes of the tangent bundle of a complex manifold are invariants of the complex structure.

It is of great importance to know whether and how the characteristic classes are related to
the underlying topological structure of the manifold. The first such relation is the identification
of the Euler class with the Euler characteristic, as given by (3). It was proved by Thom and Wu
that the Stiefel-Whitney classes can be defined through the Steenrod squaring operations and
are topological invariants. On a compact complex manifold of dimension 𝑚 we have, in analogy
to (3),

𝜒(𝑀)=∫
𝑀
𝑐𝑚(𝑀), (11)

where 𝑐𝑚(𝑀) denotes the 𝑚th Chern class of the tangent bundle of 𝑀.

From the Pontrjagin classes of the tangent bundle of a compact oriented differentiable mani-
fold𝑀4𝑘 of dimension 4𝑘Hirzebruch constructed a number called the L-genus and, using Thom’s
cobordism theory, proved that it is equal to the signature of 𝑀4𝑘. In the simplest case 𝑘 = 1 the
relation is

sign(𝑀) =
1
3
∫
𝑀
𝑝1(𝑀), 𝑀 =𝑀4 . (12)

In particular, it shows that the integral at the right-hand side is divisible by 3.

The characteristic classes are closely related to the notion of curvature in differential geom-
etry. In this respect one could take as a starting-point the theorem in plane geometry that the
sum of angles of a triangle is equal to 𝜋. More generally, let 𝐷 be a domain in a two-dimensional
Riemannian manifold, whose boundary 𝜕𝐷 is sectionally smooth. Then its Euler characteristic
is given by the Gauss-Bonnet formula

2𝜋𝜒(𝐷) =∑
𝑖
(𝜋−𝛼𝑖)+∫

𝜕𝐷

𝑑𝑠
𝜌𝑔

+∬
𝐷
𝐾𝑑𝐴, (13)

where the first term at the right-hand side is the sum of the exterior angles at the corners,
the second term is the integral of the geodesic curvature, and the last term is the integral of the
Gaussian curvature. They are respectively the point curvature, the line curvature, and the surface
curvature of the domain 𝐷, and the Gauss-Bonnet formula should be interpreted as expressing
the Euler characteristic 𝜒(𝐷) as a total curvature.

The interpretation has a far-reaching generalization. Let 𝜋∶ 𝐸 → 𝑀 be a real (smooth)
vector bundle of fiber dimension 𝑞. Let Γ(𝐸) be the space of sections of 𝐸, i.e., smooth mappings
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𝑠 ∶ 𝑀 → 𝐸 such that 𝜋 ∘ 𝑠 = identity. A connection or a covariant differential in 𝐸 is a structure
which allows the differentiation of sections. It is a mapping

𝐷∶ Γ(𝐸)→ Γ(𝑇∗⊗𝐸), (14)

where 𝑇∗ is the cotangent bundle of𝑀 and the right-hand side stands for the space of sections
of the tensor product bundle 𝑇∗⊗𝐸, such that the following two conditions are satisfied:

𝐷(𝑠1+𝑠2) = 𝐷𝑠1+𝐷𝑠2 , 𝑠1, 𝑠2 ∈ Γ(𝐸), (15a)
𝐷(𝑓𝑠) = 𝑑𝑓⊗𝑠 +𝑓𝐷𝑠, 𝑠 ∈ Γ(𝐸), (15b)

where 𝑓 in (15b) is a 𝐶∞-function.

Let 𝑠𝑖, 1 ≤ 𝑖 ≤ 𝑞, be a local frame field, i.e., be 𝑞 sections defined in a neighborhood, which
are everywhere linearly independent. Then we can write

𝐷𝑠𝑖 =∑
𝑗
𝜃𝑗
𝑖 ⊗𝑠𝑗 , (16)

where 𝜃 = (𝜃𝑗
𝑖), 1≤ 𝑖, 𝑗 ≤ 𝑞, is a matrix of one-forms, the connection matrix. Putting

𝑡𝑠 = (𝑠1,…,𝑠𝑞) ,
𝑡𝑠 = transpose of 𝑠 , (17)

we can write (16) as a matrix equation

𝐷𝑠 = 𝜃⊗𝑠. (16a)

The effect on the connection matrix under a change of the frame field can easily be found. In
fact, let

𝑠 ′ = 𝑔𝑠 (18)

be a new frame field, where 𝑔 is a nonsingular (𝑞×𝑞)-matrix of 𝐶∞-functions. Let 𝜃′ be the
connection matrix relative to the frame field 𝑠 ′ so that

𝐷𝑠 ′ = 𝜃′⊗𝑠 ′ . (19)

Using the properties of 𝐷 as expressed by (15a) and (15b), we find immediately

𝜃′𝑔 = 𝑑𝑔+𝑔𝜃. (20)

This is the equation for the change of the connection matrix under a change of the frame field.

Taking the exterior derivative of (20), we get

𝜃′ = 𝑔𝜃𝑔−1 (21)

where
Θ= 𝑑𝜃−𝜃∧𝜃 (22)

and Θ′ is defined in terms of 𝜃′ by a similar equation. Θ is a (𝑞×𝑞)-matrix of two-forms and is
called the curvature matrix relative to the frame field 𝑠. Equation (21) shows that it undergoes
a very simple transformation law under a change of the frame field. As a consequence it follows
from (21) that tr(Θ𝑘) is a form of degree 2𝑘 globally defined in 𝑀. Moreover, tr(Θ𝑘) can be
proved to be a closed form and the cohomology class {tr(Θ𝑘)} ∈ 𝐻2𝑘(𝑀,ℝ) it represents in the
sense of de Rham’s theorem can be identified with a characteristic class of 𝐸.
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Example 1.4. Let 𝑀4 be a compact oriented differentiable manifold of dimension 4. Let Θ =
(Θ𝑖

𝑗), 1 ≤ 𝑖, 𝑗 ≤ 4, be the curvature matrix of a connection in the tangent bundle of 𝑀4. Then
𝑝1(𝑀

4) can be identified with a numerical multiple of {tr(Θ2)}. By (13) we will have the integral
formula

sign(𝑀) =
1

24𝜋2 ∫𝑀
∑
𝑖,𝑗

Θ𝑗
𝑖 ∧Θ𝑖

𝑗 , 𝑀4 =𝑀. (23)

Example 1.5. When the bundle 𝜋∶ 𝐸 →𝑀 is oriented and has a Riemannian structure, the struc-
ture group is reduced to 𝑆𝑂(𝑞), and we can restrict our consideration to frame fields consisting
of orthonormal frames. Then both connection and curvature matrices are anti-symmetric, and
we have

Θ=−𝑡Θ= (Θ𝑖𝑗) , Θ𝑖𝑗+Θ𝑗𝑖 = 0. (24)

If 𝑞 is even, the Pfaffian

Pf(Θ) =
(−1)𝑟

2𝑞𝜋𝑟𝑟!
∑
𝑖
𝜀𝑖1…𝑖𝑞

Θ𝑖1𝑖2
∧⋯∧Θ𝑖𝑞−1𝑖𝑞

, 𝑟 = 𝑞/2, (25)

represents the Euler class, i.e.,
{Pf(Θ)} =𝑤𝑞(𝐸). (26)

Formula (26) is essentially the high-dimensional Gauss-Bonnet Theorem.

The starting point of this paper is the Weil homomorphism which gives a representation of
characteristic classes with real coefficients by the curvature forms of a connection in the bundle.
The connection makes many cochain constructions canonical and gives geometrical meaning to
them. The resulting homomorphism exhibits a relationship between local and global properties
which is not available in the topological theory of characteristic classes. It is effective when the
manifold has more structure, such as a foliated structure (Bott’s theorem) or a complex structure
with a holomorphic bundle over it. In the latter case we will show the fundamental role played by
the curvature forms representing characteristic classes in the Ahlfors-Weyl theory of holomorphic
curves in complex projective space, which generalizes the theory of value distributions in complex
function theory. This is the case of the geometry of a noncompact manifold where deep studies
have been carried out.

In another direction the Weil homomorphism leads to new global invariants when certain
curvature forms vanish. In recent works of Chern and Simons such invariants are found to be
nontrivial global invariants of the underlying conformal or projective structure of a Riemannian
manifold.

This exposition will be devoted to the following topics:

1. Weil homomorphism;

2. Bott’s theorem on foliated manifolds;

3. Secondary invariants (Chern-Simons);

4. Vector fields and characteristic numbers (Bott-Baum-Cheeger);

5. Holomorphic curves (Ahlfors-Weyl).

2 Connections

We will develop the fundamental notions of a connection in a principal bundle with a Lie group
as structure group. We begin by a review and an explanation of our notations on Lie groups. All
manifolds and mappings are 𝐶∞.
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Let 𝐺 be a Lie group of dimension 𝑟. A left translation 𝐿𝑎 ∶ 𝐺 → 𝐺 is defined by 𝐿𝑎 ∶ 𝑠 → 𝑎𝑠,
𝑎,𝑠 ∈ 𝐺, 𝑎 fixed. Let 𝑒 be the unit element of 𝐺 and 𝑇𝑒 the tangent space at 𝑒. A tangent vector
𝑋𝑒 ∈ 𝑇𝑒 generates a left-invariant vector field given by 𝑋𝑠 = (𝐿𝑠)∗𝑋𝑒. If 𝑇

∗
𝑒 is the cotangent space

at 𝑒 and 𝜔𝑒 ∈ 𝑇∗
𝑒 , we get a left-invariant one-form or Maurer-Cartan form 𝜔𝑠 by the definition

𝜔𝑠 = (𝐿−1
𝑠 )∗𝜔𝑒 or 𝐿∗

𝑠𝜔𝑠 =𝜔𝑒 . (27)

Let 𝜔𝑖
𝑒, 1 ≤ 𝑖 ≤ 𝑟, be a basis in 𝑇∗

𝑒 . Then 𝜔𝑖 =𝜔𝑖
𝑠 ∈ 𝑇∗

𝑠 are everywhere linearly independent
and we have

𝑑𝜔𝑖 =
1
2
∑
𝑗,𝑘

𝑐𝑖𝑗𝑘𝜔
𝑗∧𝜔𝑘 , 𝑐𝑖𝑗𝑘+𝑐𝑖𝑘𝑗 = 0, 1 ≤ 𝑖, 𝑗,𝑘 ≤ 𝑟. (28)

It is easily proved that 𝑐𝑖𝑗𝑘 are constants, the constants of structure of 𝐺. Equations (28) are
known as the Maurer-Cartan structure equations.

Let 𝑋𝑖 = (𝑋𝑖)𝑠 ∈ 𝑇𝑠 be a dual basis to 𝜔𝑖. The 𝑋𝑖 are left-invariant vector fields or, what is
the same, linear differential operators of the first order. Dual to (28) are the equations of Lie:

[𝑋𝑗,𝑋𝑖] =−∑
𝑘
𝑐𝑘𝑗𝑖𝑋𝑘 . (29)

The tangent space 𝑇𝑒 has an algebra structure given by the bracket. It is called the Lie algebra
of 𝐺 and will be denoted by 𝔤.

For a fixed 𝑎 ∈ 𝐺 the inner automorphism 𝑠 → 𝑎𝑠𝑎−1 leaves 𝑒 fixed and induces a linear
mapping

ad(𝑎) ∶ 𝔤→ 𝔤, (30)

called the adjoint mapping. We have

ad(𝑎𝑏) = ad(𝑎)ad(𝑏) , 𝑎,𝑏 ∈ 𝐺 (31)
ad(𝑎)[𝑋,𝑌] = [ad(𝑎)𝑋,ad(𝑎)𝑌], 𝑋,𝑌 ∈ 𝔤. (32)

The first relation is immediate and the second is easy to prove.

Let 𝑀 be a manifold. It will be desirable to consider 𝔤-valued exterior differential forms in
𝑀. As 𝔤 has an algebra structure, such forms can be multiplied. In fact, every 𝔤-valued form is a
sum of terms 𝑋 ⊗𝜔, where 𝜔 is an exterior differential form and 𝑋 ∈ 𝔤. We define

[𝑋 ⊗𝜔,𝑌 ⊗𝜃] = [𝑋,𝑌]⊗(𝜔∧𝜃). (33)

Distributivity in both factors then defines the multiplication of any two 𝔤-valued forms. In-
terchange of order of multiplication follows the rule

[𝑋 ⊗𝜔,𝑌 ⊗𝜃] = (−1)𝑟𝑠+1[𝑌 ⊗𝜃,𝑋 ⊗𝜔], 𝑟 = deg𝜔, 𝑠 = deg𝜃. (34)

This notion allows us to write the Maurer-Cartan equations (28) in a simple form. The
expression
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𝜔 =∑
𝑖
(𝑋𝑖)𝑒⊗𝜔𝑖 (35)

defines a left-invariant 𝔤-valued one-form in 𝐺, which is independent of the choice of the
basis. It is the Maurer-Cartan form of 𝐺. Using (28) and (29) we have

𝑑𝜔 =−
1
2
[𝜔,𝜔]. (36)

This writes the Maurer-Cartan equation in a basis-free form. Exterior differentiation of (36)
gives the Jacobi identity:

[𝜔,[𝜔,𝜔]] = 0. (37)

What we have discussed on left translations naturally holds also for right translations. In
particular, we have a right-invariant one-form 𝛼 in 𝐺. Under the mappings 𝑠 ↦ 𝑠−1, 𝑠 ∈ 𝐺, 𝜔 goes
into −𝛼. We derive therefore from (36)

𝑑𝛼 =
1
2
[𝛼,𝛼]. (38)

If we denote by 𝑑𝑠 the identity endomorphism in 𝑇𝑠 and consider it as an element of 𝑇𝑠⊗𝑇∗
𝑠 ,

then we can write
𝜔 = (𝐿𝑠−1)∗𝑑𝑠 = 𝑠−1𝑑𝑠, (39)

where (𝐿𝑠−1)∗ acts only on the first factor 𝑇𝑠 in the tensor product 𝑇𝑠⊗𝑇∗
𝑠 ; the last expression is

a convenient abbreviation. In the same way we can write 𝛼 = 𝑑𝑠𝑠−1.
Example 2.1. 𝐺 = GL(𝑞;ℝ). We can regard it as the group of all nonsingular (𝑞×𝑞)-matrices
𝑋 with real elements. Then 𝔤 is the space of all (𝑞×𝑞)-matrices, and 𝜔 = 𝑋−1𝑑𝑋. Thus the
notation in (39) has in this case a concrete meaning. The Maurer-Cartan equation is

𝑑𝜔 =−𝜔∧𝜔. (40)

A principal fiber bundle with a group 𝐺 is a mapping

𝜋∶ 𝑃 →𝑀, (41)

which satisfies the following conditions:

1. 𝐺 acts freely on 𝑃 to the left, i.e., there is an action𝐺×𝑃 →𝑃 given by (𝑎,𝑧)↦ 𝑎𝑧 = 𝐿𝑎𝑧 ∈ 𝑃,
𝑎 ∈ 𝐺, 𝑧 ∈ 𝑃, such that 𝑎𝑧 ≠ 𝑧 when 𝑎 ≠ 𝑒;

2. 𝑀 =𝑃/𝐺;

3. 𝑃 is locally trivial, i.e., there is an open covering {𝑈,𝑉,…} of 𝑀 such that to each member
𝑈 of the covering there is a chart 𝜓𝑈 ∶ 𝜋

−1(𝑈) → 𝑈 ×𝐺, with 𝜓𝑈(𝑧) = (𝜋(𝑧) = 𝑥,𝑠𝑈(𝑧)),
𝑧 ∈ 𝜋−1(𝑈), satisfying

𝑠𝑈(𝑎𝑧) = 𝑎𝑠𝑈(𝑧), 𝑧 ∈ 𝜋−1(𝑈), 𝑎 ∈ 𝐺. (42)

Suppose 𝑧 ∈ 𝜋−1(𝑈 ∩𝑉). By (42) we have also

𝑠𝑉(𝑎𝑧) = 𝑎𝑠𝑉(𝑧),

so that
𝑠𝑈(𝑎𝑧)

−1𝑠𝑉(𝑎𝑧) = 𝑠𝑈(𝑧)
−1𝑠𝑉(𝑧)
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is independent of 𝑎 and depends only on 𝑥 =𝜋(𝑧). We put

𝑠𝑈(𝑧)
−1𝑠𝑉(𝑧) = 𝑔𝑈𝑉(𝑥)

or
𝑠𝑈𝑔𝑈𝑉 = 𝑠𝑉. (43)

The 𝑔𝑈𝑉 are mappings of 𝑈 ∩𝑉 into 𝐺 and satisfy the relations

𝑔𝑈𝑉𝑔𝑉𝑈 = 𝑒 in 𝑈 ∩𝑉,

𝑔𝑈𝑉𝑔𝑉𝑊𝑔𝑊𝑈 = 𝑒 in 𝑈 ∩𝑉 ∩𝑊.

They are called the transition functions of the bundle. It is well-known that the bundle, the
principal bundle or any of its associated bundles, can be constructed from the transition functions.

The bundle structure in 𝑃 defines in each tangent space 𝑇𝑧 a subspace 𝐺𝑧 = 𝜋−1
∗ (0), called

the vertical space. By (43) each fiber of 𝑃 is the groupmanifold 𝐺 defined up to right translations.
It is thus meaningful to talk about 𝔤-valued forms in 𝑃 which restrict to the right-invariant form
𝑑𝑠𝑈𝑠

−1
𝑈 on a fiber.

We will give three definitions of a connection, which are all equivalent:

First definition of a connection. A connection is a 𝐶∞-family of subspaces 𝐻𝑧 (the hori-
zontal spaces) in 𝑇𝑧 satisfying the conditions:

1. 𝑇𝑧 =𝐺𝑧+𝐻𝑧, 𝐺𝑧∩𝐻𝑧 = 0;

2. 𝐻𝑎𝑧 = (𝐿𝑎)∗𝐻𝑧.

The second condition means that the family of horizontal spaces is invariant under the action
of the group 𝐺.

Second definition of a connection. This is the dual of the first definition, by giving instead
of 𝐻𝑧 ∈ 𝑇𝑧 its annihilator 𝑉∗

𝑧 in the cotangent space 𝑇∗
𝑧 . This in turn is equivalent to giving a

𝔤-valued one-form 𝜙 in 𝑃 which restricts to 𝑑𝑠𝑈𝑠
−1
𝑈 on a fiber, i.e., locally

𝜙(𝑧) = 𝑑𝑠𝑈𝑠
−1
𝑈 +𝜃𝑈(𝑥,𝑠𝑈,𝑑𝑥)

such that
𝜙(𝑎𝑧) = ad(𝑎)𝜙(𝑧). (45)

The last condition is equivalent to condition (2) in the first definition. It implies that locally

𝜙(𝑧) = 𝑑𝑠𝑈𝑠
−1
𝑈 +ad(𝑠𝑈)𝜃𝑈(𝑥,𝑑𝑥), (46)

where 𝜃𝑈(𝑥,𝑑𝑥) is a 𝔤-valued one-form in 𝑈. Thus the second definition of a connection is the
existence of a 𝔤-valued one-form in 𝑃, which has the local expression (46).

Third definition of a connection. When we express the condition that in 𝜋−1(𝑈 ∩𝑉) the
right-hand side of (46) is equal to the corresponding expression with the subscript 𝑉, we get

𝜃𝑈 = 𝑑𝑔𝑈𝑉𝑔
−1
𝑈𝑉+ad(𝑔𝑈𝑉)𝜃𝑉 in 𝑈 ∩𝑉, (47)

where the first term at the right-hand side is the pull-back of the right-invariant form in 𝐺 under
𝑔𝑈𝑉. Hence a connection in 𝑃 is given by a 𝔤-valued one-form 𝜃𝑈 in every member 𝑈 of an open
covering {𝑈,𝑉,…} of 𝑀, such that in 𝑈 ∩𝑉 the equation (47) holds. This is essentially the
classical definition of a connection.

We wish to take the exterior derivative of (46). For this purpose we need the following
lemma, which is easily proved (and the proof is omitted here):
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Lemma 2.1. Let 𝜃 be a 𝔤-valued one-form in 𝑈. Let 𝑠 ∈ 𝐺 and let 𝛼 = 𝑑𝑠𝑠−1 be the right-invariant
𝔤-valued one-form in 𝐺. Then, in 𝑈×𝐺, we have

𝑑(ad(𝑠)𝜃) = ad(𝑠)𝑑𝜃+[ad(𝑠)𝜃,𝛼]. (48)

We put

Θ𝑈 = 𝑑𝜃𝑈−
1
2
[𝜃𝑈,𝜃𝑈], (49)

Φ= 𝑑𝜙−
1
2
[𝜙,𝜙]. (50)

Applying the lemma we get by exterior differentiation of (46),

Φ= ad(𝑠𝑈)Θ𝑈. (51)

Thus Φ is a 𝔤-valued two-form in 𝑃, which has the local expression (51). Alternately, we
have, in 𝑈 ∩𝑉,

Θ𝑈 = ad(𝑔𝑈𝑉)Θ𝑉. (52)

Either Φ or Θ𝑈 will be called the curvature form of the connection.

Exterior differentiation of (50) gives the Bianchi Identity:

𝑑Φ=−[Φ,Φ] = [Φ,Φ]. (53)

One of the most important cases of this general theory is when 𝐺 = GL(𝑞;ℝ). As discussed
above, 𝑠𝑈 is now a nonsingular (𝑞×𝑞)-matrix, 𝜃𝑈, 𝜙 are matrices of one-forms, and Θ𝑈, Φ are
matrices of two forms. Equation (46) becomes a matrix equation

𝜙 = (𝑑𝑠𝑈+𝑠𝑈𝜃𝑈)𝑠
−1
𝑈 . (54)

Let 𝜎𝑈 (resp. 𝜎𝑉) be the one-rowed matrix formed by the first row of 𝑠𝑈 (resp. 𝑠𝑉). Then
(43) gives, by taking the first rows of both sides,

𝜎𝑈𝑔𝑈𝑉 =𝜎𝑉. (55)

This is the equation for the change of chart of the associated vector bundle 𝐸, defined as the
bundle of the first row vectors of the matrices representing the elements of GL(𝑞;ℝ). Moreover,
equating the right-hand side of (54) with the corresponding expression with the subscript 𝑉, we
get

(𝑑𝑠𝑈+𝑠𝑈𝜃𝑈)𝑔𝑈𝑉 = 𝑑𝑠𝑉+𝑠𝑉𝜃𝑉. (56)

On taking the first rows of both sides of (56), we have

𝐷𝜎𝑈𝑔𝑈𝑉 =𝐷𝜎𝑉, (57)

where we put
𝐷𝜎𝑈 = 𝑑𝜎𝑈+𝜎𝑈𝜃𝑈. (58)

Applying to a section of 𝐸, we can identify this with the operator 𝐷 in (14). Thus we have
shown that the connection in a vector bundle defined in §1 is included as a special case of our
general theory.
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Another important case is the bundle (4) discussed in §1, which is a principal bundle with
the group O(𝑞). This bundle plays a fundamental role in the study of submanifolds in euclidean
space. As remarked above, its importance in bundle theory arises from the fact that it is a
universal bundle when 𝑁 is large. We will describe a canonical connection in it. Let 𝔼𝑞+𝑁 be the
euclidean space of dimension 𝑞+𝑁. Let

𝑒𝐴 = (𝑒𝐴1,…,𝑒𝐴,𝑞+𝑁), 1 ≤ 𝐴,𝐵,𝐶 ≤ 𝑞+𝑁,

be an orthonormal frame, so that the matrix

𝑋 = (𝑒𝐴𝐵) (59)

is orthogonal. O(𝑞 +𝑁) can be identified with the space of all orthonormal frames 𝑒𝐴 (or all
orthogonal matrices 𝑋). Let

𝑑𝑒𝐴 =∑
𝐵
𝛼𝐴𝐵𝑒𝐵. (60)

Then, if 𝛼 = (𝛼𝐴𝐵), we have
𝛼 = 𝑑𝑋𝑋−1 =−𝑡𝛼. (61)

The Stiefel manifold O(𝑞 +𝑁)/O(𝑁) can be identified with the manifold of all orthonor-
mal frames 𝑒1,…,𝑒𝑞 and the Grassmann manifold O(𝑞+𝑁)/{O(𝑞)×O(𝑁)} with the 𝑞-planes
spanned by 𝑒1,…,𝑒𝑞. The matrix

𝛼 = (𝛼𝑖𝑗), 1 ≤ 𝑖, 𝑗 ≤ 𝑞, (62)

defines a connection in the bundle (4), as easily verified.

3 Weil Homomorphism

The local expression (51) of the curvature formΦ prompts us to introduce functions 𝐹(𝑋1,…,𝑋ℎ),
𝑋𝑖 ∈ 𝔤, 1≤ 𝑖 ≤ ℎ, which are real or complex valued and satisfy the conditions:

1. 𝐹 is ℎ-linear and remains unchanged under any permutation of its arguments;

2. 𝐹 is ”invariant,” i.e.,

𝐹(ad(𝑎)𝑋1,…,ad(𝑎)𝑋ℎ) = 𝐹(𝑋1,…,𝑋ℎ), all 𝑎 ∈ 𝐺. (63)

To the ℎ-linear function 𝐹(𝑋1,…,𝑋ℎ) there corresponds the polynomial

𝐹(𝑋) = 𝐹(𝑋,…,𝑋), 𝑋 ∈ 𝔤, (64)

of which 𝐹(𝑋1,…,𝑋ℎ) is the complete polarization. We will call 𝐹(𝑋) an invariant polynomial.
All invariant polynomials under 𝐺 form a ring, to be denoted by 𝐼(𝐺).

The invariance condition (63) implies its ”infinitesimal form”

∑
1≤𝑖≤ℎ

𝐹(𝑋1,…,[𝑌,𝑋𝑖],…,𝑋ℎ) = 0 𝑌,𝑋𝑖 ∈ 𝔤. (65)

More generally, if 𝑌 is a 𝔤-valued one-form and 𝑋𝑖 is a 𝔤-valued form of degree 𝑚𝑖, 1≤ 𝑖 ≤ ℎ,
we have

∑
1≤𝑖≤ℎ

(−1)𝑚1+⋯+𝑚𝑖−1𝐹(𝑋1,…,[𝑌,𝑋𝑖],…,𝑋ℎ) = 0. (66)
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It follows from (46) that if 𝐹 is an invariant polynomial of degree ℎ, we have the form of
degree 2ℎ:

𝐹(Φ) = 𝐹(Θ𝑈). (67)

The left-hand side shows that it is globally defined in 𝑃, while the right-hand side shows that
it is a form in 𝑀. Moreover, by the Bianchi identity (53) and by (66), we have

1
ℎ
𝑑𝐹(Φ) = 𝐹([Φ,Φ],Φ,…,Φ) = 0.

Hence 𝐹(Φ) is closed and its cohomology class {𝐹(Φ)} is an element of 𝐻2ℎ(𝑀,ℝ). We shall
prove that this class depends only on 𝐹 and is independent of the choice of the connection.

Lemma 3.1. Let Φ0, Φ1 be 𝔤-valued one-forms and let 𝐹 ∈ 𝐼(𝐺) be an invariant polynomial of
degree ℎ. Let

Φ𝑡 =Φ0+𝑡𝛼, 𝛼 =Φ1−Φ0, (68)

Φ𝑡 = 𝑑Φ𝑡−
1
2
[Φ𝑡,Φ𝑡]. (69)

Then
𝐹(Φ1)−𝐹(Φ0) = ℎ𝑑∫

1

0
𝐹(𝛼,Φ𝑡,…,Φ𝑡)𝑑𝑡. (70)

To prove the lemma we first find

Φ𝑡 =Φ0+𝑡(𝑑𝛼−[Φ0,𝛼])−
1
2
𝑡2[𝛼,𝛼].

Therefore we have

1
ℎ
𝑑
𝑑𝑡

𝐹(Φ𝑡) = 𝐹(𝑑𝛼−[Φ𝑡,𝛼],Φ𝑡,…,Φ𝑡).

On the other hand,

𝑑𝐹(𝛼,Φ𝑡,…,Φ𝑡) = 𝐹(𝑑𝛼,Φ𝑡,…,Φ𝑡)−(ℎ−1)𝐹(𝛼,[Φ𝑡,Φ𝑡],Φ𝑡,…,Φ𝑡).

The invariance of 𝐹 implies, by (66),

𝐹([Φ𝑡,𝛼],Φ𝑡,…,Φ𝑡)−(ℎ−1)𝐹(𝛼,[Φ𝑡,Φ𝑡],Φ𝑡,…,Φ𝑡) = 0.

It follows that

1
ℎ
𝑑
𝑑𝑡

𝐹(Φ𝑡) = 𝑑𝐹(𝛼,Φ𝑡,…,Φ𝑡), (71)

and the lemma follows by integrating this equation with respect to 𝑡.

Corollary 3.1. Let Φ0, Φ1 be two connections in the bundle 𝜋∶ 𝑃 → 𝑀 and let 𝐹 ∈ 𝐼(𝐺). Then
𝐹(Φ0) and 𝐹(Φ1), as closed forms in 𝑀, are cohomologous in 𝑀.
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Corollary 3.2. Let Φ be a connection in the bundle 𝜋∶ 𝑃 →𝑀 and let 𝐹 ∈ 𝐼(𝐺). Then 𝐹(Φ) is a
coboundary in 𝑃. More precisely, let

Φ𝑡 = 𝑡𝑑Φ−
1
2
𝑡2[Φ,Φ] = 𝑡Φ+

1
2
(𝑡 −𝑡2)[Φ,Φ]. (72)

Then
𝐹(Φ) = ℎ𝑑∫

1

0
𝐹(𝜙,Φ𝑡,…,Φ𝑡)𝑑𝑡. (73)

By putting
𝑤(𝐹) = {𝐹(Φ)}, 𝐹 ∈ 𝐼(𝐺), (74)

where the right-hand side denotes the cohomology class represented by the closed form 𝐹(Φ),
we have defined a mapping

𝑤∶ 𝐼(𝐺)→𝐻∗(𝑀,ℝ). (75)

It is clearly a ring homomorphism and is called the Weil homomorphism.

In the case that 𝐺 is a compact connected Lie group, the Weil homomorphism has a simple
geometric interpretation, which we will state without proof (cf. [7], [23]). There is a universal
principal bundle 𝜋0 ∶ 𝐸𝐺 →𝐵𝐺 with group 𝐺 such that we have the bundle map

𝑃 𝐸𝐺

𝑀 𝐵𝐺

𝑓!

𝜋 𝜋0

𝑓

(76)

where 𝑓 is defined up to a homotopy. 𝐵𝐺 is called the classifying space with the group 𝐺. The
following diagram is commutative:

𝐼(𝐺) 𝐻∗(𝑀,ℝ)

𝐻∗(𝐵𝐺,ℝ)

𝑤

𝑤0
𝑓∗ (77)

and 𝑤0 is an isomorphism. In other words, the invariant polynomials can be identified with the
cohomology classes of the classifying space and the Weil homomorphism gives the representa-
tives of characteristic classes by closed differential forms constructed from the curvature forms
of a connection.

We put

𝑇𝐹(𝜙) = ℎ∫
1

0
𝐹(𝜙,Φ𝑡,…,Φ𝑡)𝑑𝑡, (78)

so that (73) can be written
𝜋∗𝐹(Θ𝑈) = 𝐹(Φ) = 𝑑(𝑇𝐹(𝜙)). (79)

𝑇 will be called the transgression operator; it enables 𝐹(Φ) to be written as a coboundary in a
canonical way, by the use of a connection.

One application of the transgression operator is the following description of the de Rham
ring of 𝑃 (theorem of Chevalley):

Let 𝐺 be a compact connected semi-simple group of rank 𝑟 (= dimension of maximal torus
in 𝐺). Let 𝜋∶ 𝑃 →𝑀 be a principal 𝐺-bundle over a compact manifold 𝑀 and 𝜙 a connection in
𝑃. Then the ring 𝐼(𝐺) of invariant polynomials is generated by elements 𝐹1,…,𝐹𝑟 and the de
Rham ring of 𝑃 can be given as the quotient ring

𝐻∗(𝑃,ℝ) = 𝐴/𝑑𝐴, (80)
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where
𝐴 =𝑂(𝑇𝐹1(𝜙),…,𝑇𝐹𝑟(𝜙)) (81)

is the ring of polynomials in 𝑇𝐹1(𝜙),…,𝑇𝐹𝑟(𝜙) with coefficients which are forms in 𝑀.

For geometrical applications we will describe in detail the Weil homomorphism for some of
the classical groups [24]:

1. 𝐺 = 𝐺𝐿(𝑞;ℂ) = {𝑋|det𝑋 ≠ 0}, where 𝑋 is a (𝑞×𝑞)-matrix with complex elements. The
coefficients 𝐹𝑖(𝑋), 1≤ 𝑖 ≤ 𝑞, in the polynomial in 𝑡:

det(𝑡𝐼𝑞+
𝑖
2𝜋

𝑋)= 𝑡𝑞+𝐹1(𝑋)𝑡𝑞−1+⋯+𝐹𝑞(𝑋), (82)

where 𝐼𝑞 is the (𝑞×𝑞)-unit matrix, are invariant polynomials.

Suppose 𝜋∶ 𝐸 →𝑀 be a complex vector bundle and 𝜙 be a connection, with the curvature
form Φ, so that Φ is a matrix of two-forms. Then we have

𝐹𝑖(Φ) = 𝑐𝑖(𝐸) ∈ 𝐻2𝑖(𝑀,ℤ). (83)

Notice that the coefficients are here so chosen that the corresponding classes have integer
coefficients.

By the above Corollary 3.1 it suffices to establish this result in the classifying space 𝐵𝐺 =
𝐺(𝑞,𝑁;ℂ) (𝑁 sufficiently large), with its connection defined in a similar way as the one in
§2 for the real Grassmann manifold. In other words it is sufficient to consider the universal
bundle with its universal connection. The same remark applies in the identification in the
next two cases.

2. 𝐺 =𝐺𝐿(𝑞;ℝ) = {𝑋|det𝑋 ≠ 0}, where 𝑋 is a (𝑞×𝑞)-matrix with real elements. We put

det(𝑡𝐼𝑞−
1
2𝜋

𝑋)= 𝑡𝑞+𝐸1(𝑋)𝑡𝑞−1+⋯+𝐸𝑞(𝑋). (84)

Let 𝜋∶ 𝐸 →𝑀 be a real vector bundle and 𝜙 be a connection, with the curvature form Φ.
Then {𝐸2𝑘+1(Φ)} = 0 and

{𝐸2𝑘(Φ)} = 𝑝𝑘(𝐸) ∈ 𝐻4𝑘(𝑀,ℤ) (85)

is the 𝑘th Pontrjagin class of 𝐸.

3. 𝐺 = 𝑆𝑂(2𝑟). A representative of the Euler class was given by formula (26), §1.

As an application of the representation of characteristic classes by curvature forms we will
prove a theorem of Bott on foliations [10].

Let 𝑀 be a manifold of dimension 𝑛 and 𝑇𝑀 its tangent bundle. Suppose that 𝑇𝑀 has a
𝑘-dimensional subbundle 𝑊, i.e., a smooth family of 𝑘-dimensional subspaces 𝑊𝑥 ⊂ 𝑇𝑥, 𝑥 ∈𝑀,
where 𝑇𝑥 is the tangent space of 𝑀 at 𝑥. To 𝑊𝑥 corresponds the annihilator 𝑊⟂

𝑥 of dimension
𝑛−𝑘 in the cotangent space 𝑇∗

𝑥 at 𝑥. The subbundle 𝑊 is called integrable, if there exist local
coordinates 𝑥𝛼, 𝑥𝜆, 1 ≤ 𝛼 ≤ 𝑘, 𝑘 +1 ≤ 𝜆 ≤ 𝑛, such that 𝑊⟂

𝑥 is spanned by 𝑑𝑥𝜆. In other words,
the 𝑊𝑥 are tangent to the submanifolds of dimension 𝑘 defined by 𝑥𝜆 = const. An integrable
subbundle is called a foliation. The local coordinates with the above properties are defined up
to a transformation

𝑥𝛼 =𝑥𝛼(𝑥𝛽,𝑥𝜇), 𝑥𝜆 =𝑥𝜆(𝑥𝜇), 1 ≤ 𝛼,𝛽 ≤ 𝑘, 𝑘 +1≤ 𝜆,𝜇 ≤ 𝑛, (86)

where the last 𝑛−𝑘 coordinates transform among themselves. As a consequence the quotient
bundle 𝑇𝑀/𝑊 has as transition functions the Jacobian matrices (𝜕𝑥𝜆/𝜕𝑥′𝜇).
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From the existence of the foliation on 𝑀 we have an ideal ℱ in the ring of exterior differ-
ential polynomials, which is generated by 𝑑𝑥𝜆. ℱ is stable under 𝑑, i.e., 𝛼 ∈ℱ implies 𝑑𝛼 ∈ℱ.
Moreover, the product of any 𝑛−𝑘+1 elements of ℱ is zero.

From (47) we see by a stepwise extension argument that 𝑇𝑀/𝑊 has a connection whose
connection forms belong to ℱ. By (49) its curvature forms also belong to ℱ. It follows that if 𝐹
is an invariant polynomial of degree ℎ > 𝑛−𝑘, the form 𝐹(Φ) = 0. Hence every Pontrjagin class,
being a polynomial of the Pontrjagin classes defined in §1, of the bundle 𝑇𝑀/𝑊 is zero, if its
dimension is >2(𝑛−𝑘). We state this theorem of Bott as follows:

Theorem 3.3 (Bott). Let 𝑀 be a compact manifold of dimension 𝑛, which has a foliation 𝑊 of
dimension 𝑘. Then every Pontrjagin class (with real coefficients) of dimension > 2(𝑛 −𝑘) of the
quotient bundle 𝑇𝑀/𝑊 is zero.

The theorem is remarkable because the integrability of 𝑊 involves differential conditions,
so that it cannot be proved by standard methods in fiber bundles. The necessary condition
asserted in the theorem is not vacuous. For example, there are real codimension two subbundles
in the complex projective space 𝑃5(ℂ) of complex dimension 5, which do not satisfy the above
condition.

4 Secondary Invariants

¹

When the characteristic classes are given representatives by differential forms, the vanishing
of the forms leads to further invariants which deserve investigation. We follow the notations of
the last section and consider the formula 79. If 𝐹(𝜙) = 0, the form 𝑇𝐹(𝜙) is closed and defines
an element of 𝐻2ℎ−1(𝑃,ℝ). The latter depends on the connection 𝜙 and it is desirable to study
the effect on 𝑇𝐹(𝜙) under a change of the connection. This is given by the following lemma:

Lemma 4.1. Let 𝜙(𝜏) be a family of connections in 𝑃 depending on a parameter 𝜏. Let 𝜓(𝜏) =
𝜕𝜙/𝜕𝜏 and

𝑉(𝜏) =∫
1

0
𝑡ℎ−1𝐹(𝜓,𝜙(𝜏),𝑑𝜙(𝜏)−

1
2
𝑡[𝜙(𝜏),𝜙(𝜏)],…,𝑑𝜙(𝜏)−

1
2
𝑡[𝜙(𝜏),𝜙(𝜏)])𝑑𝑡 (87)

Then
𝜕
𝜕𝜏

𝑇𝐹(𝜙(𝜏)) = ℎ(ℎ−1)𝑑𝑉(𝜏)+ℎ𝐹(𝜓,𝜙(𝜏),…,𝜙(𝜏)). (88)

To avoid long expressions we will use the convention that if 𝐹 contains fewer than ℎ argu-
ments the last one is to be repeated a number of times so as to make 𝐹 a function of ℎ arguments.
Thus

𝐹(𝑋) = 𝐹(𝑋,…,𝑋),𝐹(𝑋,𝑌) = 𝐹(𝑋,𝑌, …,𝑌⏟⏟⏟⏟⏟⏟⏟
ℎ−1

), etc. (89)

With this convention in mind we find

𝑑𝐹(𝜓,𝜙(𝜏),𝑑𝜙(𝜏)−
1
2
𝑡[𝜙(𝜏),𝜙(𝜏)]) =

𝐹(𝑑𝜓,𝜙(𝜏),𝑑𝜙(𝜏)−
1
2
𝑡[𝜙(𝜏),𝜙(𝜏)])−𝐹(𝜓,𝑑𝜙(𝜏),𝑑𝜙(𝜏)−

1
2
𝑡[𝜙(𝜏),𝜙(𝜏)])

−(ℎ−2)𝑡𝐹(𝜓,𝜙(𝜏),[𝑑𝜙(𝜏)−
1
2
𝑡[𝜙(𝜏),𝜙(𝜏)],𝜙(𝜏)],𝑑𝜙(𝜏)−

1
2
𝑡[𝜙(𝜏),𝜙(𝜏)]).

¹The results in this section are taken from joint work with James Simons, cf. [?].
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By (66) the last term is equal to

−𝑡𝐹([[𝜙(𝜏),𝜓],𝜙(𝜏)],𝑑𝜙(𝜏)−
1
2
𝑡[𝜙(𝜏),𝜙(𝜏)])

+𝑡𝐹(𝜓,[𝜙(𝜏),𝜙(𝜏)],𝑑𝜙(𝜏)−
1
2
𝑡[𝜙(𝜏),𝜙(𝜏)]).

We have therefore

𝑑𝐹(𝜓,𝜙(𝜏),𝑑𝜙(𝜏)−
1
2
𝑡[𝜙(𝜏),𝜙(𝜏)]) =

𝐹(𝑑𝜓−𝑡[[𝜙(𝜏),𝜓],𝜙(𝜏)],𝜙(𝜏),𝑑𝜙(𝜏)−
1
2
𝑡[𝜙(𝜏),𝜙(𝜏)])

−𝐹(𝜓,𝑑𝜙(𝜏)−𝑡[𝜙(𝜏),𝜓],𝑑𝜙(𝜏)−
1
2
𝑡[𝜙(𝜏),𝜙(𝜏)]).

On the other hand, we have

ℎ−1 𝜕
𝜕𝜏

𝑇𝐹(𝜙(𝜏)) =

∫
1

0
𝑡ℎ−1𝐹(𝜓,𝑑𝜙(𝜏)−

1
2
𝑡[𝜙(𝜏),𝜙(𝜏)])𝑑𝑡

+(ℎ−1)∫
1

0
𝑡ℎ−1𝐹(𝜙(𝜏),𝑑𝜓−𝑡[𝜙(𝜏),𝜓],𝑑𝜙(𝜏)−

1
2
𝑡[𝜙(𝜏),𝜙(𝜏)])𝑑𝑡.

It follows that

ℎ−1 𝜕
𝜕𝜏

𝑇𝐹(𝜙(𝜏))−(ℎ−1)𝑑𝑉(𝜏) =

ℎ∫
1

0
𝑡ℎ−1𝐹(𝜓,𝑑𝜙(𝜏)−

2ℎ−1
2ℎ

𝑡[𝜙(𝜏),𝜙(𝜏)],𝑑𝜙(𝜏)−
1
2
𝑡[𝜙(𝜏),𝜙(𝜏)])𝑑𝑡.

To simplify the last integral we introduce the curvature form

Φ(𝜏) = 𝑑𝜙(𝜏)−
1
2
[𝜙(𝜏),𝜙(𝜏)] (90)

of the connection 𝜙(𝜏). Putting

𝑎 =
2ℎ−1

ℎ
,

the integrand above, up to the factor 𝑡ℎ−1, can be expanded:

𝐹(𝜓,𝑑𝜙(𝜏)−
1
2
𝑎𝑡[𝜙(𝜏),𝜙(𝜏)],𝑑𝜙(𝜏)−

1
2
𝑡[𝜙(𝜏),𝜙(𝜏)])

= 𝐹(𝜓,𝜙(𝜏)+
1
2
(1−𝑎𝑡)[𝜙(𝜏),𝜙(𝜏)],𝜙(𝜏)+

1
2
(1−𝑡)[𝜙(𝜏),𝜙(𝜏)])

= 𝐹(𝜓,𝜙(𝜏))+ ∑
1≤𝑟≤ℎ−1

𝑐𝑟(𝑡)𝐹⎛

⎝
𝜓,𝜙(𝜏),…,𝜙(𝜏),

1
2
[𝜙(𝜏),𝜙(𝜏)],…,

1
2
[𝜙(𝜏),𝜙(𝜏)]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑟

⎞

⎠

where

𝑐𝑟(𝑡) =(
ℎ−2
𝑟

)(1−𝑡)𝑟+(
ℎ−2
𝑟 −1

)(1−𝑡)𝑟−1(1−𝑎𝑡).
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From elementary calculus we know

∫
1

0
𝑡𝑚(1−𝑡)𝑛𝑑𝑡 =

𝑚!𝑛!
(𝑚+𝑛+1)!

, 𝑚 ≥ 0, 𝑛 ≥ 0.

Using this it is immediately verified that

∫
1

0
𝑡ℎ−1𝑐𝑟(𝑡)𝑑𝑡 = 0, 1 ≤ 𝑟 ≤ ℎ−1.

This proves the lemma.

From the lemma follows immediately the theorem:

Theorem 4.1. Let 𝜋∶ 𝑃 → 𝑀 be a principal bundle with the group 𝐺, and let 𝐹 ∈ 𝐼(𝐺) be an
invariant polynomial. Let 𝜙(𝜏) be a family of connections, with the curvature form Φ(𝜏), which
satisfy the conditions

𝐹(𝜕𝜙(𝜏)/𝜕𝜏,Φ(𝜏),…,Φ(𝜏)) = 0,
𝐹(Φ(𝜏),…,Φ(𝜏)) = 0.

(91)

Then the cohomology class {𝑇𝐹(𝜙(𝜏))} is independent of 𝜏.

As ℎ is the degree of 𝐹, the conditions (91) are automatically satisfied when 2ℎ > dim𝑀+1.

Equivalently the conditions (91) can be written in terms of a local chart. By (46) and using
the fact that 𝐹 is an invariant polynomial, we can write (91) as

𝐹(𝜕𝜃𝑈(𝜏)/𝜕𝜏,𝜃𝑈(𝜏),…,𝜃𝑈(𝜏)) = 0,
𝐹(𝜃𝑈(𝜏),…,𝜃𝑈(𝜏)) = 0.

(92)

We now apply these results to the principal bundle of the tangent bundle of a manifold 𝑀 of
dimension 𝑛, so that the structure group is 𝐺 =𝐺𝐿(𝑛;ℝ). The connection will be the Levi-Civita
connection of a riemannian metric in 𝑀 and it will have special properties. We use a local chart
with the coordinates 𝑥𝑖, 1 ≤ 𝑖, 𝑗,𝑘, 𝑙 ≤ 𝑛, and we will omit the subscript 𝑈 in our notations. The
riemannian metric is given by the scalar products

ℎ𝑖𝑗 = ℎ𝑗𝑖 =⟨
𝜕
𝜕𝑥𝑖 ,

𝜕
𝜕𝑥𝑗⟩, (93)

which are the elements of a positive definite symmetric matrix:

𝐻 = 𝑡𝐻 = (ℎ𝑖𝑗) > 0. (94)

Let the connection matrix be

𝜃 = (𝜃𝑗
𝑖), 𝜃𝑗

𝑖 =∑
𝑘
Γ𝑗𝑖𝑘𝑑𝑥

𝑘. (95)

It is determined by the conditions

𝑑𝐻 −𝜃𝐻 −𝐻𝑡𝜃 = 0, Γ𝑗𝑖𝑘 = Γ𝑗𝑘𝑖. (96)

The curvature form is given by
Θ= 𝑑𝜃−𝜃∧𝜃. (97)

Exterior differentiation of (96) gives

Θ𝐻 +𝐻𝑡Θ= 0, (98)

i.e., the matrix Θ𝐻 is anti-symmetric.
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Lemma 4.2. Let 𝐹 be an invariant polynomial of odd degree ℎ, and Θ the curvature matrix of the
Levi-Civita connection of a riemannian metric. Then

𝐹(Θ) = 0. (99)

To prove this, notice that 𝐹 clearly has the property:

𝐹(Θ) = 𝐹(𝑡Θ). (100)

By (98) this is equal to
𝐹(−𝐻−1Θ𝐻)= (−1)ℎ𝐹(Θ).

Hence we have (99) when ℎ is odd.

We write
Θ= (Θ𝑗

𝑖), (101)

where we set
Θ𝑗

𝑖 =−
1
2
∑
𝑘,𝑙

𝑅 𝑗
𝑖𝑘𝑙𝑑𝑥

𝑘∧𝑑𝑥𝑙, 𝑅 𝑗
𝑖𝑘𝑙+𝑅 𝑗

𝑖𝑙𝑘 = 0. (102)

The 𝑅 𝑗
𝑖𝑘𝑙 define the Riemann curvature tensor and satisfy the symmetry relations

𝑅 𝑗
𝑖𝑘𝑙+𝑅 𝑗

𝑖𝑙𝑘 = 0,

𝑅 𝑗
𝑖𝑘𝑙+𝑅 𝑗

𝑘𝑙𝑖+𝑅 𝑗
𝑙𝑖𝑘 = 0.

(103)

The last relation can also be written as

∑
𝑖
𝑑𝑥𝑖∧Θ𝑗

𝑖 = 0. (104)

We will consider the case of a conformal family of Riemannian metrics, given by the matrix
𝐻(𝜏) = exp(2𝜎𝜏)𝐻, where 𝜎 is a scalar function and 𝜏 is the parameter. Then we have ([?], p.
89) the matrix equation

1
𝜏
(𝜃(𝜏)−𝜃(0)) = 𝑑𝜎𝐼 +𝛼+𝛽, (105)

where 𝐼 is the unit matrix and

𝛼 =(
𝜕𝜎
𝜕𝑥𝑖 𝑑𝑥

𝑗), 𝛽 =−(∑
𝑘
ℎ𝑖𝑘𝑑𝑥

𝑘∑
ℓ

𝜕𝜎
𝜕𝑥ℓ ℎ

𝑗ℓ), 𝐻−1 = (ℎ𝑖𝑗). (106)

Lemma 4.3. Let 𝐹 be an invariant polynomial of even degree 2𝑠. For the Levi-Civita connections of
a conformal family of Riemannian metrics we have

𝐹(
𝜕𝜃(𝜏)
𝜕𝜏

,𝜃(𝜏))= 0. (107)

In fact, the left-hand side of this equation is equal to

𝑑𝜎𝐹(𝐼,𝜃(𝜏))+𝐹(𝛼,𝜃(𝜏))+𝐹(𝛽,𝜃(𝜏)).

By Lemma 4.2 the first term is zero. By the fundamental theorem on vector invariants every
term in 𝐹(𝛼,𝜃(𝜏)) contains a factor Σ𝑑𝑥𝑗∧𝜃𝑖

𝑗(𝜏), which is zero by (104). Similarly, every term
in 𝐹(𝛽,𝜃(𝜏)) contains a factor Σ𝑖,𝑘ℎ𝑖𝑘𝑑𝑥

𝑘∧𝜃𝑖
𝑗(𝜏), which is also seen to be zero. Thus the lemma

is proved.

This lemma, together with the formula (88), gives the theorem:
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Theorem 4.2. Let 𝜋∶ 𝑃 → 𝑀 be the principal bundle of the tangent bundle of a manifold 𝑀 of
dimension 𝑛. Let 𝐹 ∈ 𝐼(GL(𝑛;ℝ)) be an invariant polynomial of degree 2𝑠. Let 𝜙 and 𝜙∗ be
the connection forms of the Levi-Civita connections of two Riemannian metrics on 𝑀, which are
conformal to each other. Then there exists a form 𝑊 of degree 4𝑠 −2 in 𝑃, such that

𝑇𝐹(𝜙∗)−𝑇𝐹(𝜙) = 𝑑𝑊. (108)

Corollary 4.3. The form 𝐹(Φ) remains invariant under a conformal transformation of the Rieman-
nian metric.

More precisely, A. Avez ([?]) expressed 𝐹(Φ) in terms of the Weyl conformal tensor of the
Riemannian metric.

Corollary 4.4. If 𝐹(Φ) = 0, then 𝑇𝐹(𝜙) defines an element {𝑇𝐹(𝜙)} ∈ 𝐻4𝑠−1(𝑃,ℝ), which de-
pends only on the underlying conformal structure of the Riemannian manifold 𝑀.

In exactly the same way one can establish results concerning a projective transformation
of the Riemannian metric, i.e., a change of the Riemannian metric which leaves the geodesics
invariant. Such a change is described by a form 𝜆 = Σ𝑖𝑎𝑖(𝑥)𝑑𝑥

𝑖 and the connection forms are
related by ([?], p. 132)

𝜃∗−𝜃 = 𝜆𝐼 +𝛼, (109)

where
𝛼 = (𝑎𝑖𝑑𝑥

𝑗). (110)

The connections 𝜃 and 𝜃∗ can be joined by the family 𝜃(𝜏), 0≤ 𝜏 ≤ 1, given by

1
𝜏
(𝜃(𝜏)−𝜃) = 𝜆𝐼 +𝛼. (111)

The above arguments apply and we conclude that 𝐹(Φ) is a projective invariant and that, if
𝐹(Φ) = 0, the cohomology class {𝑇𝐹(𝜙)} in 𝑃 is also a projective invariant.

In order to utilize our secondary invariants we look for cases where 𝐹(Φ) = 0. One is the
situation which occurs in Bott’s theorem on foliations discussed above. Recently this has given
rise to an active development in the works of Bott, Haefliger, etc. [?].

Another case concerns with immersed submanifolds 𝑀 in the Euclidean space 𝔼𝑁 of dimen-
sion 𝑁 =𝑛+ℎ, which we will discuss in some detail. The basic fact is the commutative diagram

𝑃 O(𝑛+ℎ)/O(ℎ)

𝑀 O(𝑛+ℎ)/{O(𝑛)×O(ℎ)}.

𝑔̃

𝜋 𝜋0

𝑔

(112)

Here 𝑃 is the bundle of orthonormal frames over 𝑀 and 𝑔 and 𝑔̃ are the Gauss mappings defined
by parallelisms in the ambient Euclidean space. The bundle at the right-hand side of the diagram
has a canonical connection described at the end of §2. We denote its connection and curvature
forms by 𝜙̃ and Φ̃ respectively; they are therefore anti-symmetric matrices of forms. Then the
Levi-Civita connection is given by 𝜙 = 𝑔̃∗𝜙̃ and its curvature form is Φ = 𝑔̃∗Φ̃. In fact, this was
the original definition of Levi-Civita of his connection, generalizing a classical construction for
surfaces in 𝔼3.

We put
𝑃𝑘(Φ) = 𝐸2𝑘(Φ), (113)
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where the latter are defined in (84); these will be called the Pontrjagin forms. The dual Pontr-
jagin forms are introduced by the equation

∑
𝑘≥0

𝑃𝑘(Φ)∑
𝑗≥0

𝑃⟂
𝑗 (Φ) = 1, 𝑃0 =𝑃⟂

0 = 1, (114)

and are uniquely determined. By the duality theorem on Pontrjagin classes, the cohomology
classes {𝑃⟂

𝑗 (Φ)} ∈ 𝐻4𝑗(𝑀,ℝ) are the Pontrjagin classes of the normal bundle of 𝑀 in 𝔼𝑁. Since
the normal bundle has fiber dimension ℎ, we have

{𝑃⟂
𝑗 (Φ)} = 0, [

ℎ
2
]+1≤ 𝑗. (115)

We will show that the forms 𝑃⟂
𝑗 (Φ) themselves are zero. In fact, we have

{𝑃⟂
𝑗 (Φ̃)} = 0, [

ℎ
2
]+1≤ 𝑗.

But the Grassmann manifold is a symmetric Riemannian manifold and the form 𝑃⟂
𝑗 (Φ̃) is

invariant under the action of the group O(𝑛+ℎ). Hence, in the range of 𝑗 described above, we
have 𝑃⟂

𝑗 (Φ̃) = 0 and therefore
𝑃⟂
𝑗 (Φ) = 𝑔̃∗𝑃⟂

𝑗 (Φ̃) = 0.

It is thus possible to apply the construction of secondary invariants to the invariant polyno-
mials 𝑃⟂

𝑗 . We will state our general theorem as follows:

Theorem 4.5. Let 𝑀 be a compact manifold of dimension 𝑛, with a Riemannian metric 𝑑𝑠2. Nec-
essary conditions for its conformal immersion in 𝔼𝑛+ℎ are:

𝑃⟂
𝑗 (𝑑𝑠

2) = 0, [
ℎ
2
]+1≤ 𝑗, (116)

{
1
2
𝑇𝑃⟂

𝑗 (𝑑𝑠
2)} ∈𝐻4𝑗−1(𝑃,ℤ), [

ℎ
2
]+1≤ 𝑗 ≤ [

𝑛−1
2

], (117)

where we use the argument 𝑑𝑠2 to replace its Levi-Civita connection in the notation.

Conditions (116) follows from the above discussions. The proof of (117) is lengthy and can
be found in [?].

We will carry out our construction for 𝑃1 =−𝑃⟂
1 . By (113) and (84) we have

𝑃1(Φ) =
1

8𝜋2 ∑
𝑖,𝑗
(𝜙𝑗

𝑖𝜙
𝑖
𝑗 −𝜙𝑖

𝑖𝜙
𝑗
𝑗). (118)

In the notation of (72) we introduce the form

Φ𝑡 = 𝑡(𝑑𝜙−𝑡𝜙∧𝜙) = 𝑡{Φ+(1−𝑡)𝜙∧𝜙}, (119)

so that we find the polarized form

𝑃1(𝜙,Φ𝑡) =
𝑡

8𝜋2 ∑
𝑖,𝑗,𝑘

{𝜙𝑗
𝑖 ∧Φ𝑖

𝑡−𝜙𝑗
𝑖 ∧Φ𝑖

𝑡−(1−𝑡)𝜙𝑗
𝑖 ∧Φ𝑘

𝑡 ∧Φ𝑖
𝑡}. (120)

It follows that
𝑇𝑃1(𝜙) = 2∫

1

0
𝑃1(𝜙,Φ𝑡)𝑑𝑡 (121)
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=
1

8𝜋2 ∑
𝑖,𝑗,𝑘

{𝜙𝑗
𝑖 ∧𝜙𝑖

𝑗 −𝜙𝑗
𝑖 ∧𝜙𝑖

𝑗 −
1
3
𝜙𝑗
𝑖 ∧𝜙𝑘

𝑗 ∧𝜙𝑖
𝑘}.

When restricted to orthonormal frames the matrices

𝜙 = (𝜙𝑖𝑗), Φ = (Φ𝑖𝑗)

are anti-symmetric and (121) simplifies to

𝑇𝑃1(𝜙) =
1

8𝜋2 {∑
𝑖,𝑗

𝜙𝑖𝑗∧𝜙𝑖𝑗−
1
3
∑
𝑖,𝑗,𝑘

𝜙𝑖𝑗∧𝜙𝑗𝑘∧𝜙𝑘𝑖}. (122)

When 𝑀 is of dimension 3, 𝑃1(Φ) vanishes for dimension reasons and we get a closed form
𝑇𝑃1(𝜙) in the bundle 𝑃 of orthonormal frames. In view of Theorem 4.5 we write

1
2
𝑇𝑃1(𝜙) =

1
8𝜋2 ∑

1≤𝑖<𝑗≤3
𝜙𝑖𝑗∧𝜙𝑖𝑗−

1
8𝜋2𝜙12∧𝜙23∧𝜙31, (123)

and we find
∫
𝜋−1(𝑥)

1
2
𝑇𝑃1(𝜙) = 1, (124)

when the fibers 𝜋−1(𝑥), 𝑥 ∈𝑀, are properly oriented.

Suppose 𝑀 be compact and orientable. Our form 1
2𝑇𝑃1(𝜙) gives rise to an invariant 𝐽(𝜙) =

𝐽(𝑑𝑠2) ∈ ℝ/ℤ as follows: It is known that 𝑀 is parallelizable, so that a section 𝑠 ∶ 𝑀 → 𝑃 exists.
The integral

𝐼(𝑠) =∫
𝑠𝑀

1
2
𝑇𝑃1(𝜙) (125)

is a real number. For another section 𝑠 ′ ∶ 𝑀 → 𝑃 the difference 𝐼(𝑠)− 𝐼(𝑠 ′) is an integer, since
𝑃 is homologically equivalent to the product 𝑀×𝜋−1(𝑥) modulo torsion and 1

2𝑇𝑃1(𝜙) satisfies
(124). The invariant 𝐽(𝑑𝑠2) is defined to be 𝐼(𝑠) mod 1. By Corollary 4.4 it depends only on
the conformal structure on 𝑀 and by Theorem 4.5 it is zero if 𝑀 can be conformally immersed
in 𝔼4.

To show that our invariants are not vacuous we wish to calculate 𝐽(𝑑𝑠2) for𝑀 = SO(3) with
its biinvariant Riemannian metric. 𝑀 is therefore the elliptic space in non-Euclidean geometry.
Let 𝜔𝑖𝑗 =−𝜔𝑗𝑖, 1≤ 𝑖, 𝑗 ≤ 3, be the Maurer-Cartan forms in SO(3), so that the structure equations
are

𝑑𝜔𝑖𝑘 =∑
𝑗
𝜔𝑖𝑗∧𝜔𝑗𝑘, 1 ≤ 𝑖, 𝑗,𝑘 ≤ 3. (126)

Its biinvariant metric is given by

𝑑𝑠2 =𝜔2
12+𝜔2

13+𝜔2
23. (127)

In writing these equations we have chosen a basis in the Lie algebra of SO(3) and hence, by right
translations, a frame field in the manifold SO(3). It will be convenient to choose our notation
so that the equations remain invariant under a cyclic permutation of 1,2,3. We set

𝛼𝑖 =𝜔𝑗𝑘, i,j,k = cyclic permutation of 1,2,3. (128)

Then (127) becomes
𝑑𝑠2 =𝛼2

1 +𝛼2
2 +𝛼2

3 . (129)
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The connection and curvature forms

𝜃𝑖𝑗 =−𝜃𝑗𝑖, Θ𝑖𝑗 =−Θ𝑗𝑖

are determined by the equations

𝑑𝛼𝑖 =∑
𝑗
𝛼𝑗∧𝜃𝑗𝑖,

𝑑𝜃𝑖𝑘−∑
𝑗
𝜃𝑖𝑗∧𝜃𝑗𝑘 =Θ𝑖𝑘.

(130)

Comparing these with the structure equations (126), we find

𝜃𝑖𝑗 =
1
2
𝛼𝑘, Θ𝑖𝑗 =−

1
4
𝛼𝑖∧𝛼𝑗. (131)

It follows that
1
2
𝑇𝑃1(𝜙) =−

1
16𝜋2𝛼1∧𝛼2∧𝛼3. (132)

Since the total volume of SO(3) is 8𝜋2, we get 𝐽 = 1
2 for 𝑀 = SO(3) with the biinvariant

metric. It is to be observed that 𝐽 remains unchanged when the metric is modified by a constant
positive factor because it is a conformal invariant. As a consequence we have the theorem: The
non-Euclidean elliptic space cannot be conformally immersed in 𝔼4.

This is a global theorem, because the space is isometrically covered by the three-dimensional
sphere of constant curvature and can certainly be locally isometrically imbedded in 𝔼4. On the
other hand, by a theorem of M. Hirsch it can be globally differentiably immersed in 𝔼4.
Remark 4.6. The cohomology classes {𝑇𝐹(𝜙)} with real coefficients, when they are defined, are
in the principal bundle 𝑃. It is possible, using the connection, to define cohomology classes with
coefficients ℝ/ℤ in the base manifold. These invariants are called Simons characters (unpub-
lished).

5 Vector Fields and Characteristic Numbers

We will give an account of results of Bott, Baum, and Cheeger onrelations between the char-
acteristic numbers of a manifold and the behavior at the zeroes of a vector field which satisfies
certain conditions. As noted by these authors, the Weil homomorphism plays a fundamental role
in these results.

We will deal with the tangent bundle of a real or complex manifold, so that the structure
group 𝐺 is the real or complex linear group and is, in the case of a riemannian manifold, the
orthogonal group. As in previous sections we consider these groups as matrix groups and their
Lie algebras as spaces of matrices. Adjoint action is given by

ad(𝐴)𝑋 =𝐴𝑋𝐴−1, 𝐴 ∈ 𝐺, 𝑋 ∈ 𝔤.

An ℎ-linear function 𝐹 is invariant if

𝐹(𝐴𝑋1𝐴
−1,…,𝐴𝑋ℎ𝐴

−1) = 𝐹(𝑋1,…,𝑋ℎ), 𝑋𝑖 ∈ 𝔤, all 𝐴 ∈𝐺. (133)

Consider first the case of a complex hermitian manifold 𝑀 of complex dimension 𝑚. This
means that in the complex tangent spaces 𝑇𝑥, 𝑥 ∈𝑀, of 𝑀 there is given a 𝐶∞-family of positive
definite hermitian scalar products 𝐻(𝜉,𝜂), 𝜉,𝜂 ∈ 𝑇𝑥, which is linear in 𝜉 and antilinear in 𝜂. In
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local coordinates 𝑧𝑖, 1≤ 𝑖, 𝑗,𝑘, 𝑙 ≤𝑚, the hermitian structure is defined by the scalar products of
the basis vectors:

ℎ ̄𝚤𝑘 =𝐻(
𝜕
𝜕𝑧𝑖

,
𝜕

𝜕𝑧𝑘
)=ℎ ̄𝑘𝑖, (134)

and the matrix
𝐻 = 𝑡𝐻= (ℎ ̄𝚤𝑘)

is positive definite. A complex vector field is given by

𝜉 =∑
𝑖
𝜉𝑖 𝜕
𝜕𝑧𝑖

. (135)

It is called holomorphic, if the components 𝜉𝑖 are holomorphic functions in 𝑧𝑘.

A connection

𝐷(
𝜕
𝜕𝑧𝑖

)=∑
𝑘
𝜔𝑘

𝑖
𝜕

𝜕𝑧𝑘
. (136)

is uniquely determined by the conditions:

1. For two holomorphic vector fields 𝜉, 𝜂, defined locally,

𝑑𝐻(𝜉,𝜂) = 𝐻(𝐷𝜉,𝜂)+𝐻(𝜉,𝐷𝜂); (137)

2. The connection forms 𝜔𝑘
𝑖 are of bidegree (1,0). In fact, the first condition can be written

as
𝑑ℎ ̄𝚤𝑘 =∑

𝑗
𝜔

̄𝑗
𝑖ℎ ̄𝑗𝑘+∑

𝑗
ℎ ̄𝚤𝑗𝜔

𝑗
𝑘, (138)

and the second condition gives
𝜕ℎ ̄𝚤𝑘 =∑

𝑗
𝜔

̄𝑗
𝑖ℎ ̄𝑗𝑘, (139)

which completely determines the connection.

The equations can be shortened by the introduction of the matrix

𝜔 = (𝜔
̄𝑗

𝑖) (140)

Then (139) can be written
𝜔 = 𝜕𝐻 ⋅𝐻−1. (141)

On exterior differentiation we get

̄𝜕𝜔−𝜔∧𝜔 = 0. (142)

On the other hand, the curvature matrix is defined by

Ω= ̄𝜕𝜔, (143)

so that it is of bidegree (1,1).

It is important to study the effect on these matrices under a change of chart. If the new
coordinates are 𝑧∗𝑖 and if the new quantities are denoted by the same notations with asterisks,
we have the easily verified equations

𝐻∗ = 𝐽𝐻𝑡𝐽,
𝜔∗ = 𝜕𝐽𝐽−1+𝐽𝜔𝐽−1,
Ω∗ = 𝐽Ω𝐽−1,

(144)
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where

𝐽 =(
𝜕𝑧𝑗

𝜕𝑧∗𝑖
) (145)

is the Jacobian matrix. In particular, Ω is an endomorphism-valued two-form or, what is the
same, a two-form with values in 𝑇𝑀 ⊗𝑇∗𝑀.

Let
𝜔

̄𝑗
𝑖 =∑

𝑘
Γ

̄𝑗
̄𝚤𝑘𝑑𝑧

𝑘. (146)

Then
𝑇

̄𝑗
̄𝚤𝑘 = Γ

̄𝑗
̄𝚤𝑘−Γ

̄𝑗
̄𝑘𝑖

(147)

are the components of a section of the bundle 𝑇𝑀 ⊗𝑇∗𝑀⊗𝑇∗𝑀. It defines the so-called torsion
tensor.

Let 𝜉 be a holomorphic vector field. Then

𝐷𝜉 =∑
𝑖,𝑗

𝜉𝑖
,𝑗𝑑𝑧

𝑗⊗
𝜕
𝜕𝑧𝑖

(148)

is an element of Γ(𝑇∗𝑀⊗𝑇𝑀) and is a field of endomorphisms. If we put

Ξ= (𝜉𝑖
,𝑗) (149)

we have
Ξ∗ = 𝐽Ξ𝐽−1. (150)

Observe that at 𝜉 = 0, Ξ is the matrix of the partial derivatives of 𝜉𝑖. A zero of 𝜉 is called
nondegenerate if detΞ≠ 0.

Another field of endomorphisms is given by the components ∑𝑘𝑇
̄𝑗
̄𝚤𝑘𝜉

𝑘. Combining the two,
we have the field of endomorphisms Ξ𝜆 with the components 𝜉

̄𝑗
,𝑖 +𝜆∑𝑘𝑇

̄𝑗
̄𝚤𝑘𝜉

𝑘, having 𝜆 as a
parameter. Clearly under a change of chart we have

Ξ∗
𝜆 = 𝐽Ξ𝜆𝐽

−1. (151)

Using the local chart we immediately verify that

̄𝜕Ξ1 =−𝑖(𝜉) ̄𝜕𝜔, (152)

where 𝑖(𝜉) denotes the interior product by the vector 𝜉. It follows that

𝑖(𝜉)Ω= 𝑖(𝜉) ̄𝜕𝜔 =− ̄𝜕Ξ1.

By putting 𝐸 =−Ξ1, we have
̄𝜕𝐸 = 𝑖(𝜉)Ω. (153)

Perhaps the simplest result after the Hopf formula (2) on relations between characteristic
numbers and vector fields is the following theorem of Bott.

Theorem 5.1. Let 𝑀 be a compact complex hermitian manifold of complex dimension 𝑚, whose
curvature matrix isΩ. Let 𝐹 be an invariant polynomial of degree𝑚 relative to the group GL(𝑚;ℂ).
Suppose 𝜉 be a holomorphic vector field on 𝑀 with nondegenerate isolated zeroes. Then

(
𝑖
2𝜋

)
𝑚

∫
𝑀
𝐹(Ω) = ∑

zero of 𝜉

𝐹(Ξ)
detΞ

. (154)
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We will sketch a proof of this theorem, whose idea is quite simple. It is to write 𝐹(Ω) as
a derived form in 𝑀 −{zero of 𝜉} and to apply Stokes’ Theorem. We polarize 𝐹 and insert as
arguments both Ω and 𝐸, which are both endomorphism-valued, i.e., we put

𝐹(𝑟)(Ω) =(
𝑚
𝑟
)𝐹(𝐸,…,𝐸⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑟
,Ω,…,Ω⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑚−𝑟
), 0 ≤ 𝑟 ≤𝑚, (155)

so that 𝐹(𝑟)(Ω) is a form of bidegree (𝑚−𝑟,𝑚−𝑟) in 𝑀. Using (153) we immediately get

𝑖(𝜉)𝐹(𝑟)(Ω) = ̄𝜕𝐹(𝑟+1)(Ω), 0 ≤ 𝑟 ≤𝑚−1. (156)

The vector field 𝜉 gives rise to the one-form

𝜋 =∑
𝑖,𝑘

ℎ ̄𝚤𝑘𝑑𝑧
𝑖𝜉𝑘∧∑

𝑖,𝑘
ℎ ̄𝚤𝑘

̄𝜉𝑘, 𝜉 ≠ 0, (157)

satisfying 𝑖(𝜉)𝜋 = 1. It is easily verified that

𝑖(𝜉) ̄𝜕𝜋 = 0. (158)

Since both 𝑖(𝜉) and ̄𝜕 are anti-derivations, we find

𝑖(𝜉) ̄𝜕(𝜋∧( ̄𝜕𝜋)𝑟−1∧𝐹(𝑟)(Ω)) =

( ̄𝜕𝜋)𝑟𝑖(𝜉)𝐹(𝑟)(Ω)−( ̄𝜕𝜋)𝑟−1𝑖(𝜉)𝐹(𝑟−1)(Ω), 1 ≤ 𝑟 ≤𝑚,

which gives

𝑖(𝜉){ ∑
1≤𝑟≤𝑚

̄𝜕(𝜋∧( ̄𝜕𝜋)𝑟−1∧𝐹(𝑟)(Ω))+𝐹(Ω)}= 0.

The form in the braces is of bidegree (𝑚,𝑚). Since we have assumed 𝜉 ≠ 0, it follows that

̄𝜕( ∑
1≤𝑟≤𝑚

𝜋∧( ̄𝜕𝜋)𝑟−1∧𝐹(𝑟)(Ω))+𝐹(Ω) = 0.

By consideration of the bidegree the operator ̄𝜕 at the left can be replaced by 𝑑. This gives

𝐹(Ω) = 𝑑Π, in 𝑀−{zero of 𝜉}, (159)

where
Π=− ∑

1≤𝑟≤𝑚
𝜋∧( ̄𝜕𝜋)𝑟−1∧𝐹(𝑟)(Ω). (160)

The formula (159) localizes the problem of integrating 𝐹(Ω).

To evaluate the integral of 𝐹(Ω) over 𝑀 it suffices to integrate Π over the spheres 𝑆𝜀 of
radius 𝜀 about the zeroes of 𝜉 and take the limit of the integral as 𝜀 → 0. Since the integral is
a characteristic number, its value is independent of the choice of an hermitian metric on 𝑀. We
choose the latter so that it has a simple behavior at the zeroes of 𝜉. In fact, let 𝑧𝑖 be a local
coordinate system centered at an isolated zero of 𝜉. Let 𝜆𝑖 be the eigenvalues of the matrix Ξ at
the origin. The nondegeneracy of the zero is equivalent to the condition 𝜆1⋯𝜆𝑚 ≠ 0. We can
choose the coordinates 𝑧𝑖 so that in a sufficiently small neighborhood we have

𝜉 =∑
𝑖
𝜆𝑖𝑧

𝑖 𝜕
𝜕𝑧𝑖

. (161)
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Suppose the metric be

𝑑𝑠2 =∑
𝑖

1
|𝜆𝑖|2

𝑑𝑧𝑖𝑑 ̄𝑧𝑖. (162)

Then we have
𝜋 =∑

𝑖
𝜆−1
𝑖 ̄𝑧𝑖𝑑𝑧𝑖/∑

𝑖
|𝑧𝑖|2 (163)

and
(Σ|𝑧𝑖|2) ̄𝜕𝜋 =−∑

𝑖
𝜆−1
𝑖 𝑑𝑧𝑖∧𝑑 ̄𝑧𝑖+𝜋∧(…),

(Σ|𝑧𝑖|2)𝑚𝜋∧( ̄𝜕𝜋)𝑚−1

=±
(𝑚−1)!
𝜆1⋯𝜆𝑚

{∑
𝑖
𝑑𝑧1∧𝑑 ̄𝑧1∧⋯∧ ̄𝑧𝑖𝑑𝑧𝑖∧⋯∧𝑑𝑧𝑚∧𝑑 ̄𝑧𝑚}

The expression between the braces is a multiple of the volume element (relative to the metric
Σ𝑖𝑑𝑧

𝑖𝑑 ̄𝑧𝑖) of 𝑆𝜀 = {𝑧|Σ|𝑧𝑖|2 = 𝜀2}, when restricted to 𝑆𝜀. For the metric (162) we have clearly
Ω=0, so that

Π=−𝜋∧( ̄𝜕𝜋)𝑚−1𝐹(𝐸,…,𝐸). (164)

As 𝜀 →0, we obtain

∫
𝑀
𝐹(

𝑖
2𝜋

Ω)=𝐶 ∑
zero of 𝜉

𝐹(Ξ)
detΞ

,

where 𝐶 is a universal constant independent of 𝐹. By putting 𝐹 = det, we find 𝐶 = 1. This proves
the theorem.

We can formulate Theorem 5.1 in terms of the Chern classes of𝑀. In fact, let 𝐹𝑘, 1≤ 𝑘 ≤𝑚,
be the functions introduced in (??). There exists to 𝐹 a polynomial 𝐹̃ such that

𝐹(
𝑖
2𝜋

Ω)= 𝐹̃(𝐹1(Ω),…,𝐹𝑚(Ω)). (165)

Then

∫
𝑀
𝐹(

𝑖
2𝜋

Ω)=∫
𝑀
𝐹̃(𝑐1(𝑀),…,𝑐𝑚(𝑀)). (166)

On the other hand, each summand at the right-hand side of (154) can be written

𝐹̃(𝜎1,…,𝜎𝑚)/𝜎𝑚,

where 𝜎𝑖, 1≤ 𝑖 ≤𝑚, is the 𝑖th elementary symmetric function of the eigenvalues of Ξ. Theorem
5.1 can be stated as follows:

Theorem 5.2. Let 𝑀 be a compact complex manifold of complex dimension 𝑚. Let

𝑐𝛼(𝑀) = 𝑐𝛼1 (𝑀)⋯𝑐𝛼𝑚(𝑀), 𝛼1+2𝛼2+⋯+𝑚𝛼𝑚 =𝑚. (167)

Suppose 𝜉 be a holomorphic vector field with non-degenerate isolatedzeroes. Then

∫
𝑀
𝑐𝛼(𝑀) = ∑

zero of 𝜉

𝜎𝛼1
1 ⋯𝜎𝛼𝑚

𝑚

𝜎𝑚
, (168)

where 𝜎𝑖, 1 ≤ 𝑖 ≤ 𝑚, is the 𝑖th elementary symmetric function of the eigenvalues of the matrix
Ξ= (𝜕𝜉𝑖/𝜕𝑧𝑘) at 𝜉 = 0.
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Baum and Bott extended Theorem 5.1 to meromorphic vector fields with isolated zeroes
([?]). They used an algebraic geometrical method (cf. also new differential geometrical proof
by Chern [?]).

The theorem has a real analogue treated by Bott and further pursued by Baum and Cheeger
([?], [?]). It concerns with the Killing vector fields of a compact oriented riemannian manifold
of even dimension 2𝑚. The Killing equations are classically written ([?])

𝜉𝑖,𝑗+𝜉𝑗,𝑖 = 0, (169)

so that the matrix Ξ = (𝜉𝑖,𝑗) is anti-symmetric. Its eigenvalues are of the form ±𝑖𝜆𝑗, 1 ≤ 𝑗 ≤ 𝑚,
where 𝜆𝑗 is real. We denote by 𝜎𝑗 the 𝑗th elementary symmetric function of 𝜆2

1 ,…,𝜆2
𝑚 and let

𝜏 = 𝜆1⋯𝜆𝑚. Then 𝜏 = 𝜎1/2
𝑚 depends on the orientation of 𝑀 and changes its sign under a

reversal of the orientation. A zero of 𝜉 is called non-degenerate if 𝜏 ≠ 0. We consider an invariant
polynomial 𝐹 of degree𝑚with respect to the group 𝑆𝑂(2𝑚), so that its arguments are (2𝑚×2𝑚)
anti-symmetric matrices. Into 𝐹we substitute the curvature forms of the riemannian metric. The
study of its integral leads to the theorem:

Theorem 5.3. Let 𝑀 be a compact oriented riemannian manifold of dimension 2𝑚. Let 𝑝𝑖(𝑀),
1 ≤ 𝑖 ≤ [𝑚/2], be the Pontrjagin classes of 𝑀 and 𝑒(𝑀) be its Euler class. Let 𝜉 be a Killing vector
field with nondegenerate isolated zeroes. Then

∫
𝑀
𝑝𝛼1
1 ⋯𝑝𝛼ℎ

ℎ 𝑒(𝑀)𝛽 = ∑
zero of 𝜉

𝜎𝛼1
1 ⋯𝜎𝛼ℎ

ℎ 𝜏𝛽−1, ℎ = [
𝑚
2
], (170)

where
2(𝛼1+2𝛼2+⋯+ℎ𝛼ℎ)+𝛽𝑚 =𝑚.

If the vector field generates a compact group, such results have an alternative treatment by
the Atiyah-Singer 𝐺-index theory. Cf. [?].

6 Holomorphic Curves

We have given in the above several applications of the Weil homomorphism, i.e., the represen-
tation of characteristic classes by curvature forms. Perhaps the most important ones remain to
come from the study of noncompact manifolds, which is a far more difficult subject than the case
of compact manifolds. For non-compact manifolds standard approaches to characteristic classes
(such as an axiomatic treatment) do not apply and the curvature representation plays a more
vital role.

To get deep results it is probably necessary to impose on the problems conditions in the
form of differential equations or differential inequalities. An example of such conditions is the
Cauchy-Riemann equations in complex function theory; perhaps no other differential system has
been as thoroughly studied. In this section we will consider non-compact holomorphic curves in
the complex projective space and show that the curvature forms of hermitian line bundles over
a curve play a fundamental role in the theory of value distributions of Nevanlinna-Weyl-Ahfors.
It is to be pointed out that a non-compact holomorphic curve in the complex projective line is
exactly what is called a meromorphic function, which is generally non-algebraic. Thus the results
do have wider scope than the compact holomorphic curves.

Let 𝑀 be a complex manifold of complex dimension 𝑚 and let 𝜋∶ 𝐸 →𝑀 be a holomorphic
line bundle. This means that 𝑀 has an open covering {𝑈,𝑉,…} such that to each 𝑈 there is a
chart 𝜓𝑈 ∶ 𝜋

−1(𝑈) → 𝑈 ×ℂ, with 𝜓𝑈(𝑧) = (𝜋(𝑧) = 𝑥,𝑦𝑈(𝑧)), 𝑧 ∈ 𝜋−1(𝑈); the local charts are
related by the equation

𝑦𝑈𝑔𝑈𝑉 =𝑦𝑉, in 𝑈 ∩𝑉 ≠∅, (171)
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where 𝑔𝑈𝑉 ∶ 𝑈 ∩𝑉 →ℂ−{0} is holomorphic.

The holomorphy of the transition functions 𝑔𝑈𝑉 has important implications. Let an hermitian
norm be given in 𝐸, i.e., a 𝐶∞-function ℎ𝑈 >0 in each 𝑈, such that

‖𝑦‖2 = ℎ−1
𝑈 |𝑦𝑈|

2 = ℎ−1
𝑉 |𝑦𝑉|

2 in 𝑈 ∩𝑉. (172)

Equation (172) is equivalent to
ℎ𝑈|𝑔𝑈𝑉|

2 = ℎ𝑉. (172a)

It follows that
Ω=

𝑖
2𝜋

𝜕𝜕 logℎ𝑈 (173)

is independent of 𝑈. Ω defines a closed form of bidegree (1,1) in 𝑀, the curvature form of the
hermitian line bundle 𝐸, whose cohomology class 𝑐1(𝐸) is the first Chern class of 𝐸.

It is desirable to allow the hermitian structure to have singularity on a divisor. If 𝜙𝑈 = 0 is
the local representation of a divisor, we suppose

ℎ𝑈 = |𝜙𝑈|
2𝑠ℎ′

𝑈, ℎ′
𝑈 >0, (174)

where 𝑠 is an integer. This generalized structure will be called semi-hermitian. If 𝑀 is one-
dimensional, the singularities of ℎ𝑈 are isolated and, relative to a suitable local coordinate 𝜁, ℎ𝑈
will be of the form

ℎ𝑈 = |𝜁|2𝑠ℎ′
𝑈, ℎ′

𝑈 >0. (175)

The integer 𝑠 is called the order of the singularity.

An application of Stokes’ Theorem to (173) gives the theorem [?]:

Theorem 6.1 (Gauss-Bonnet). Let 𝜋∶ 𝐸 →𝑀 be a semi-hermitian holomorphic line bundle over a
one-dimensional complex manifold 𝑀. Let 𝐷 be a compact domain of 𝑀 with smooth boundary 𝜕𝐷
and 𝑠 ∶ 𝐷 →𝐸 be a holomorphic section such that

1. 𝜕𝐷 contains no singularity of the hermitian structure;

2. 𝑠(𝜕𝐷) does not meet the zero section of the bundle.

Then
𝑛(𝑠)−𝑛(ℎ) =−∫

𝐷
Ω+

1
2𝜋

∫
𝜕𝐷

𝑑𝑐 log‖𝑠‖, 𝑑𝑐 = 𝑖(𝜕−𝜕), (176)

where 𝑛(𝑠) is the number of zeroes of the section in 𝐷, 𝑛(ℎ) is the number of singularities of the
semi-hermitian structure in 𝐷, and ‖𝑠‖ is the hermitian norm of the section on the boundary.

We consider the complex projective space 𝑃𝑛(ℂ) of dimension 𝑛. To define it we take the
complex vector space ℂ𝑛+1 of dimension 𝑛+1 and identify its non-zero vectors which differ from
each other by a factor. The identification

𝜋∶ ℂ𝑛+1−{0}→𝑃𝑛(ℂ) (177)

defines a holomorphic line bundle over 𝑃𝑛(ℂ). To 𝑥 ∈ 𝑃𝑛(ℂ), 𝜋
−1(𝑥) is a nonzero vector 𝑍 =

(𝑧0,…,𝑧𝑛) of ℂ
𝑛+1, determined up to a factor; 𝑍will be called a homogeneous coordinate vector

of 𝑥.

The geometry in 𝑃𝑛(ℂ) arises from the hermitian scalar product

(𝑍,𝑊) = 𝑧0𝑤0+⋯+𝑧𝑛𝑤𝑛, 𝑊 = (𝑤0,…,𝑤𝑛) (178)

in ℂ𝑛+1. We set
|𝑍,𝑊|= |(𝑍,𝑊)|, |𝑍|2 = (𝑍,𝑍). (179)
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Then |𝑍| defines an hermitian norm in the bundle (177). By (173) the Chern class of its dual
bundle, the hyperplane section bundle, is represented by the curvature form

Ω=
𝑖
𝜋
𝜕𝜕 log|𝑍|. (180)

This form has the further property that it is positive definite, in the following sense: The complex
structure on 𝑃𝑛(ℂ) sets up a one-one correspondence between real forms of bidegree (1,1) and
the hermitian differential forms; the hermitian form corresponding to Ω is positive definite. We
can therefore use it to define an hermitian structure on 𝑃𝑛(ℂ), which gives the classical Fubini-
Study metric (Cf. [?]).

It can be verified that
∫
𝑃1
Ω=1, (181)

so that {Ω}, the cohomology class represented by Ω, is a generator of 𝐻2(𝑃𝑛(ℂ),ℤ). It follows
that Ω𝑛 is a volume element of 𝑃𝑛(ℂ), with total volume equal to 1.

Consider an algebraic curve
𝑓∶ 𝑀 →𝑃𝑛(ℂ), (182)

where 𝑀 is a compact one-dimensional complex manifold without boundary and 𝑓 is holomor-
phic. The above discussion identifies the area of the curve with its order and we have the formula
of Wirtinger:

𝐴(𝑀)=∫
𝑓(𝑀)

Ω=𝑛(𝑓(𝑀)∩𝛼) = 𝑣(𝑀). (183)

Here 𝐴(𝑀) is the area, 𝑣(𝑀) is the order of the curve, and 𝑛(𝑓(𝑀)∩𝛼) is the number of common
points of 𝑓(𝑀) with any hyperplane 𝛼; the equalities at the two ends of (183) are definitions.

The Gauss-Bonnet Theorem 6.1 extends this relationship to a compact domain𝐷with bound-
ary and we have the theorem:

Theorem 6.2 (Unintegrated first main theorem). Let 𝑀 be a one-dimensional complex manifold
and 𝑓∶ 𝑀 → 𝑃𝑛(ℂ) be a holomorphic mapping. Let 𝐷 be a compact domain of 𝑀 with smooth
boundary 𝜕𝐷, such that 𝑓(𝜕𝐷) does not meet a hyperplane 𝛼. Then

𝑛(𝐷,𝛼)−𝐴(𝐷) =
1
2𝜋

∫
𝑓(𝜕𝐷)

𝑑𝑐 log
|𝑍,𝛼⟂|
|𝑍| ⋅ |𝛼|

, (184)

where 𝑛(𝐷,𝛼) is the number of points in 𝑓(𝐷)∩𝛼 and 𝛼⟂ is the ”pole” of 𝛼, i.e., the point orthogonal
to all points of 𝛼.

Thus, while the formula (183) is not valid for a domain 𝐷 with boundary, Theorem 6.2 gives
a useful expression for the difference 𝑛(𝐷,𝛼)−𝐴(𝐷). When 𝑀 is non-compact and 𝐷 exhausts
𝑀, each of 𝑛(𝐷,𝛼) and 𝐴(𝐷) could become infinite and our main concern is to estimate their
relative growth and the growth of other geometrical quantities which eventually enter into play.
The quantity against which the growths aremeasured is the exhaustion function. It is by definition
a smooth function 𝜏∶ 𝑀 → ℝ+ satisfying the conditions: (1) The mapping 𝜏 is proper, i.e., the
inverse of a compact set is compact; (2) The critical points are isolated. An example of a function
satisfying (2) is a real harmonic function.

Suppose 𝜏 be a harmonic exhaustion function of 𝑀. Let

𝐷𝑢 = {𝜁 ∈𝑀 ∣ 𝜏(𝜁) ≤ 𝑢}. (185)

For simplicity we write
𝑛(𝐷𝑢,𝛼) = 𝑛(𝑢,𝛼), 𝐴(𝐷𝑢) = 𝑣0(𝑢). (186)
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Then (184) can be written

𝑛(𝑢,𝛼)−𝑣0(𝑢) =
1
2𝜋

∫
𝑓(𝜕𝐷𝑢)

dℂ log
|𝑍(𝜁 ),𝛼⟂|
|𝑍(𝜁 )| ⋅ |𝛼⟂|

, 𝜁 ∈ 𝜕𝐷𝑢. (187)

By a standard argument the integration and the differential operator dℂ can be interchanged
and we can integrate the above formula with respect to 𝑢. We put

𝑁(𝑢,𝛼) =∫
𝑢

0
𝑛(𝑡,𝛼)d𝑡, 𝑇0(𝑢) =∫

𝑢

0
𝑣0(𝑡)d𝑡 (188)

and

𝑚(𝑢,𝛼) =
1
2𝜋

∫
𝜕𝐷𝑢

log
|𝑍(𝜁 )| ⋅ |𝛼⟂|
|𝑍(𝜁 ),𝛼⟂|

dℂ𝜏 ≥ 0, 𝜁 ∈ 𝜕𝐷𝑢. (189)

Then the integration of (187) gives

𝑁(𝑢,𝛼)+𝑚(𝑢,𝛼) = 𝑇0(𝑢)+𝑚(0,𝛼). (190)

This is the integrated form of the first main theorem. As a corollary we have the fundamental
inequality

𝑁(𝑢,𝛼) ≤ 𝑇0(𝑢)+ const. (191)

The function 𝑇0(𝑢) is called the order function. Equation (191) shows that it dominates
𝑁(𝑢,𝛼) for all 𝛼.

The space of the hyperplanes of ℙ𝑛(ℂ) has a measure defined to be the measure of their
poles. That is, if 𝜂 is a hyperplane, we define

d𝜂 = d𝜂⟂, 𝜂⟂ = pole of 𝜂. (192)

It is easy to prove:

Theorem 6.3 (Crofton-type formula). Let 𝑓∶ 𝑀 → ℙ𝑛(ℂ) be a compact holomorphic curve with
or without boundary. Then

∫𝑛(𝑓(𝑀)∩𝜂)d𝜂 = 𝐴(𝑀), (193)

where 𝐴(𝑀) is the area of the curve.

When it is applied to the inequality (191), we have:

Theorem 6.4 (Equidistribution in measure of holomorphic curves). Let 𝑓∶ 𝑀 →ℙ𝑛(ℂ) be a holo-
morphic curve, which has an exhaustion function 𝑢 →∞. Then the set of hyperplanes 𝜂 such that
𝜂∩𝑓(𝑀) =∅ is of measure zero.

The strengthening of this theorem includes some of the most beautiful results in complex
function theory. Following R. Nevanlinna we define the defect of hyperplane 𝛼 by

𝛿(𝛼) = liminf
𝑢→∞

𝑚(𝑢,𝛼)
𝑇0(𝑢)

= 1− limsup
𝑢→∞

𝑁(𝑢,𝛼)
𝑇0(𝑢)

. (194)

Then we have by (190)
0≤ 𝛿(𝛼) ≤ 1 (195)

and 𝛿(𝛼) = 1 if 𝑓(𝑀)∩𝛼 =∅.

The fundamental theorem on value distributions can be stated as follows:
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Theorem 6.5. Let 𝑓∶ ℂ→ℙ𝑛(ℂ) be a holomorphic curve which is non-degenerate (i.e., it does not
lie in a linear space of lower dimension). Let 𝛼𝑗, 1 ≤ 𝑗 ≤ 𝑞, be 𝑞 hyperplanes in general position.
Then

∑
1≤𝑗≤𝑞

𝛿(𝛼𝑗) ≤ 𝑛+1. (196)

The theorem was proved by R. Nevanlinna for the classical case 𝑛 = 1 and by Ahlfors for
general 𝑛. The proof in the general case is very long and we refer the reader to [?], [?] and, for
the case 𝑛 = 2, to [?]. Although the problem originates in analysis, it is most natural to regard
it as a chapter in the complex differential geometry of curves.

There are many technical details in the proof. But two main ideas stand out as guideposts.
The first idea is the consideration of the osculating spaces of all dimensions of the curve. By
taking the osculating spaces of dimension 𝑘, we get a holomorphic curve 𝑓𝑘 in the Grassmann
manifold of all 𝑘-dimensional linear projective spaces in ℙ𝑛(ℂ); 𝑓𝑘(ℂ) is called the 𝑘th associated
curve. As in the case 𝑘 = 0, this introduces the 𝑘th order function 𝑇𝑘(𝑢).

The second idea can be described as finding a lower bound for 𝑁(𝑢,𝛼), whereas the in-
equality (191) gives an upper bound. Following F. Nevanlinna and Ahlfors this is achieved by
applying integral geometry with a singular density. The inequality in question can be written

(1−𝜆)∫
𝑢

0
d𝑡∫

𝐷𝑡

|𝑍 ∧𝑍 ′,𝑍 ∧𝛼⟂|2

|𝑍|4 |𝑍 ∧𝛼⟂|2
(

|𝑍|
|𝑍,𝛼⟂|

)
2𝜆

|d𝜁d𝜁| < 𝐵𝑇0(𝑢)+𝐵 ′,

0 < 𝜆 < 1, 𝜁 ∈ℂ (197)

where 𝐵, 𝐵 ′ are positive constants. This inequality, and its analogues for the associated curves,
play a fundamental role in the proof of (196).

The broad outlines given above could well be the beginning of a long chapter on the global
theory of holomorphic mappings of non-compact complex manifolds. We restrict ourselves in
referring to the account of W. Stoll ([?]) and to recent studies by P. Griffiths and his coworkers
([?], [?]). It is conceivable that characteristic classes, in the spirit of this paper, will furnish the
key to a satisfactory theory.
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